
Copyright

by

Sukanya Thapa

2023

1

The Thesis Committee for Sukanya Thapa
certifies that this is the approved version of the following thesis:

Enhancing Worker Management and Supporting External

Tasks in Crowdsourced Data Labeling

SUPERVISING COMMITTEE:

Matthew Lease, Supervisor

Ying Ding, Second Reader

2

Enhancing Worker Management and Supporting External

Tasks in Crowdsourced Data Labeling

by

Sukanya Thapa

Thesis

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Information Science

The University of Texas at Austin

December 2023

3

Abstract

Enhancing Worker Management and Supporting External

Tasks in Crowdsourced Data Labeling

Sukanya Thapa, MSIS
The University of Texas at Austin, 2023

SUPERVISOR: Matthew Lease

Human data labeling is key to training supervised machine learning (ML)

models. We propose a new software infrastructure layer to augment capabilities of

Amazon’s SageMaker Ground Truth (GT) data labeling platform. Whereas crowd-

sourced annotation via Amazon Mechanical Turk (MTurk) is well-established, Ama-

zon’s more recent GT platform is less known but specifically designed to support ML

annotation. Differentiating features include a curated “public crowd” sourced from

MTurk, and integrating human labeling into Amazon’s broader SageMaker ML tool

suite, which provides an end-to-end pipeline for training and deploying ML services.

Key features of our software layer include: 1) continuous worker performance

monitoring wrt. Requester gold labels; 2) automatically restricting task access when

performance standards are not met; 3) geographic-based restriction of task access

to US-based workers; and 4) the ability to conduct external tasks off-platform while

sourcing workers from GT and continuing to use GT’s payment system. Our de-

sign seeks to streamline Requester experience with minimal changes, and to utilize

a sustainable software design to ease long-term management, extension, and mainte-

nance. More generally, design goals center on promoting efficient, user-friendly, and

quality-focused data labeling with crowdsourced annotators.

4

Table of Contents

Chapter 1: Introduction . 7

Chapter 2: Sagemaker Ground Truth: Capabilities and Limitations 10

2.1 Overview of Existing System . 10

2.2 SageMaker Ground Truth: Concepts and Vocabulary 11

2.3 Additional AWS Building Blocks . 13

2.4 Limitations of Existing System . 14

2.5 Difference between MTurk and GT 14

Chapter 3: Design Goals and Implementation Challenges 16

3.1 Design Goals . 16

3.1.1 Enhance Workforce Management Controls and Automation . . 16

3.1.2 Minimal Changes to the Current GT Workflow for Requesters . 16

3.1.3 A Simplified System Design Solution for Easier System Mainte-
nance . 17

3.1.4 Seamless Worker Experience for External Tasks on GT 17

3.2 Challenges and Solutions . 17

3.2.1 Worker Identification . 17

3.2.2 Configuring Jobs for Performance Monitoring 18

3.2.3 Blocking Poorly Performing Workers During Ongoing Jobs . . . 18

3.2.4 Establishing a Mechanism to Validate Completion Codes for Ex-
ternal Tasks . 19

Chapter 4: Enhanced System Architecture and Workflow 20

4.1 Overview of Enhanced System . 20

4.1.1 Accuracy Check Implementation 20

4.1.2 Blocking Poor Performing Workers Identified from Existing System 21

4.1.3 Accuracy Threshold and Gold Answers Threshold 21

4.1.4 Qualification (i.e. Timezone) 21

4.1.5 Email Based Failure Notification 22

4.2 Internal Architecture of Worker Quality Control (WQC) Engine . . . 22

4.2.1 Pre-Labeling Lambda Function 23

4.2.2 Sagemaker APIs . 23

4.2.3 Worker Quality Control (WQC) APIs 25

4.2.4 Worker Accuracy History . 25

4.3 Labeling Job Deployment . 25

5

4.3.1 Requester Initiates Job Configuration 25

4.3.2 Pre-Labeling Lambda Function Configuration 26

4.3.3 WQC Gateway Processing . 27

4.3.4 Worker Interaction . 27

4.3.5 Task Completion and Accuracy Check 28

4.3.6 Accuracy Lambda Function Failure Monitoring 29

4.3.7 Communicating Blocking to Workers 29

Chapter 5: Qualtrics Integration to GT . 30

5.1 Motivation for Qualtrics Integration 30

5.2 Overview of Qualtrics Integration to GT 30

5.3 Challenges and Opportunities . 31

Chapter 6: Discussion and Conclusion . 33

6.1 Discussion . 33

6.2 Conclusion . 36

Appendix A . 38

Code Repository Link . 38

User Guide Link . 38

List of Timezones . 38

Further Readings . 40

6

Chapter 1: Introduction

Human annotation of data is fundamental to training supervised machine

learning models. With the release of Amazon’s Mechanical Turk (MTurk)1 plat-

form nearly two decades ago, crowdsourced annotation swiftly became popular due

to its efficiency, cost-effectiveness, and the ability to engage a global workforce. More

recently, Amazon’s SageMaker Ground Truth (GT)2 platform was launched to focus

more specifically on data annotation for machine learning (ML), with a variety of

differentiating features in comparison to MTurk. For example, one can choose be-

tween three types of human workforces for annotation: public crowdsourced workers

(curated from MTurk), third-party vendors (sourced from a marketplace3), or private

(i.e., “bring your own”) workers. GT is also integrated with the broader Amazon

SageMaker4 suite for machine learning, thereby integrating data annotation into an

end-to-end pipeline for training and deploying ML services. For further discussion of

differences between GT vs. MTurk, see Chapter 2.5 and Table 2.1.

Most germane to our work, GT strives to simplify the Requester experience

by exposing fewer controls to the Requester. While this motivation is laudable, some

Requesters may prefer to retrain access to some of the controls provided by MTurk

while also taking advantage of other different features of GT (e.g., integration with

SageMaker), in order to have the best of both worlds. Of specific interest here, GT

lacks Requester controls to: 1) further curate its public workforce (i.e., by screening

specific workers in or out); 2) to restrict tasks to specific geographic regions (e.g., the

US); and 3) to conduct external tasks off-platform while sourcing and paying workers

via GT. In regard to external tasks, it is common with MTurk to execute more flexible

1https://www.mturk.com/
2https://aws.amazon.com/sagemaker/groundtruth/
3https://aws.amazon.com/marketplace/
4https://docs.aws.amazon.com/sagemaker/

7

https://www.mturk.com/
https://aws.amazon.com/sagemaker/groundtruth/
https://aws.amazon.com/marketplace/
https://docs.aws.amazon.com/sagemaker/

task designs via one’s own webserver, or to use third-party survey platforms (such as

Qualtrics or SurveyMonkey) to preserve a constant task design across workers sourced

from different workforce providers.

In this work, we seek to bridge the gap between the strengths of each respective

platform, MTurk and GT. To achieve this, we authored a novel Worker Quality

Control Engine atop GT that augments it with a set of MTurk-like features, including:

• Continuous worker performance monitoring. This is achieved via Requester-

provided 1) task gold labels; and 2) a task-specific accuracy function (which

allows for flexible comparison between gold labels and worker responses than

simple exact match).

• Automatic enforcement of accuracy standards. When Requester-specified

performance standards are not met, task access is immediately blocked. This

prevents access both to further data instances within a current, ongoing task

and to future tasks (from any Requester using our system) having equal or

stricter accuracy requirements. This functions in the background to limit task

access to both historically and currently poorly-performing workers while mini-

mizing effort for the Requester to take advantage of this workforce management

functionality.

• Geographic-based restriction to tasks. Specifically, we provide support

for restrict tasks to US-based workers, though our approach, based on an open

timezone library, could be easily extended to support restriction to other geo-

graphic regions.

• External task support. Using our system, Requesters can conduct tasks

outside of GT while still sourcing and paying workers via GT. Specifically, we

implement support for conducting Qualtrics surveys with GT workers. Our

implementation could also be further generalized in future work to support

other survey platforms.

8

The remainder of this thesis is organized as follows. In Chapter 2, we pro-

vide an introduction to the GT platform, discussing its capabilities and limitations.

Chapter 3 outlines the design goals for our proposed enhanced system, highlighting

key implementation challenges and potential resolutions. In Chapter 4, we delve into

the architecture of the enhanced system and its data workflows. Chapter 5 focuses

on overcoming limitations in GT to accommodate external Human Intelligence Tasks

(HITs) and explores the integration of Qualtrics surveys onto the GT platform. In

Chapter 6.1, we reflect on our work, its limitations, and implications for future work.

Finally, we conclude in Chapter 6.2.

9

Chapter 2: Sagemaker Ground Truth: Capabilities

and Limitations

Chapter 1 provided a brief introduction to Amazon’s SageMaker Ground Truth

(GT) labeling platform and some of its differentiating features vs. the better known

Mechanical Turk (MTurk) platform. In this chapter, we introduce and discuss the

GT platform in greater detail, including its capabilities and limitations. This lays the

groundwork for understanding the novel Worker Quality Control Engine presented in

this thesis as a layer atop GT. We briefly note in passing here that GT also provides

a library of sample task UIs 1 to ease task creation, as well as a video 2 for getting

started with use of the GT platform.

2.1 Overview of Existing System

Figure 2.1 illustrates a typical GT workflow. After presenting this workflow,

we precede in Section 2.2 to further describe system concepts and vocabulary.

As shown at the left of the figure (#1), a Requester initiates a labeling job by

configuring essential parameters. This involves providing the S3 location for the input

manifest, specifying a Worker Task Template written in Crowd HTML and Liquid

Template language, and implementing a Pre-Labeling Lambda Function to process

data before dispatching it to the public workforce. Furthermore, a Post-Labeling

Lambda Function manages the processing of labeled data upon job completion.

Once configured, the job is launched; see “Launch Labeling Job” (#2) in Fig-

ure 2.1. This dispatches it to MTurk, where Crowd Workers (#3) specifically curated

for GT accept and complete the task (#4), receiving compensation upon successful

completion. The labeled data then returns to GT from MTurk (#5). Subsequently,

1https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis
2https://www.youtube.com/watch?v=_FPI6KjDlCI

10

https://github.com/aws-samples/amazon-sagemaker-ground-truth-task-uis
https://www.youtube.com/watch?v=_FPI6KjDlCI

Figure 2.1: Overview of Existing System

GT processes the data further using the Post-Labeling Lambda Function to generate

an output manifest (#6).

2.2 SageMaker Ground Truth: Concepts and Vocabulary

1. Crowd Workers: While GT provides access to three different workforces (pub-

lic, vendor, and private), we focus on the public workforce in our implementa-

tion. Public workers are sourced from MTurk and find and complete annota-

tion tasks via the MTurk platform as usual. However, only a curated subset of

MTurk’s workforce receives qualifications to access GT tasks, which are posted

on MTurk under the Requester handle MLDataLabeler.

2. Requesters: Individuals (e.g., researchers, practioners, etc.) who initiate la-

beling jobs. Requesters configure job parameters, such as input manifests and

Worker Task Templates, to facilitate the labeling process.

3. Labeling Job: The process aspects of assigning labeling tasks to workers. A

job includes the configuration, execution, and post-processing stages.

11

4. Labeling Task: A specific data instance to be labeled (or unit of work to be

completed, if a task page contains multiple data instances to be annotated)

within a larger labeling job. This corresponds to a Human Intelligence Task

(HIT) in MTurk vocabulary 3.

5. Assignment. Whenever a worker accepts a labeling task (i.e., agrees to perform

it), this is known as an assignment of the given worker to the given task. A

labeling job may specify that each of its tasks be completed by multiple workers

redundantly, e.g., for the purposes quality control. See MTurk vocabulary 4.

6. AWS Lambda Functions 5: Serverless computing services that allow the

execution of code without the need for provisioning or managing servers. In the

context of SageMaker GT, they perform data processing before and after the

labeling process.

(a) Pre-Labeling Lambda Function: Responsible for pre-processing data

before dispatching it to the workforce.

(b) Post-Labeling Lambda Function: Manages processing after the com-

pletion of labeling tasks.

7. S3 Bucket6: Amazon’s Simple Storage Service (S3) allows data storage and

retrieval. In the context of SageMaker GT, S3 is used to store input manifests

and other essential data for labeling jobs.

8. Manifests: in the context of GT, a manifest is a structured document that

serves as a component in the configuration of labeling jobs. There are two

primary types of manifests:

3https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/

mechanical-turk-concepts.html
4https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/

mechanical-turk-concepts.html
5https://docs.aws.amazon.com/lambda/
6https://docs.aws.amazon.com/s3/

12

https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/mechanical-turk-concepts.html
https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/mechanical-turk-concepts.html
https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/mechanical-turk-concepts.html
https://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/mechanical-turk-concepts.html
https://docs.aws.amazon.com/lambda/
https://docs.aws.amazon.com/s3/

(a) Input Manifest: Configures the S3 location of input data for the labeling

job. The input data provided to GT is subsequently dispatched to your

workers for labeling.

(b) Output Manifest: Generated post-labeling, providing metadata about

the labeled dataset.

9. Crowd HTML 7: A markup language used in Worker Task Templates. It

providesa structured way to design the appearance and layout of tasks presented

to crowd workers.

10. Liquid Template Language 8: Liquid is a templating language used in con-

junction with Crowd HTML. It allows for dynamic content generation and logic

within the Worker Task Template, enabling flexibility in designing and cus-

tomizing tasks. See GT documentation on adding automation with Liquid 9.

11. Worker Task Template: A structured template, authored in Crowd HTML

and Liquid Template language, shaping the tasks assigned to crowd workers.

2.3 Additional AWS Building Blocks

1. CloudWatch10: a monitoring and observability service that offers real-time

insights into the operational health of applications and resources. Our system

uses CloudWatch to track and analyze logs of services involved in the lifecycle

of a labeling job.

2. DynamoDB11: a NoSQL database service. Our system uses DynamoDB to

store and manage performance history of workers.

7https://docs.aws.amazon.com/sagemaker/latest/dg/sms-ui-template-reference.html
8https://liquidjs.com/index.html
9https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.

html#sms-custom-templates-step2-automate
10https://aws.amazon.com/cloudwatch/
11https://aws.amazon.com/dynamodb/

13

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-ui-template-reference.html
https://liquidjs.com/index.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html#sms-custom-templates-step2-automate
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-custom-templates-step2.html#sms-custom-templates-step2-automate
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/dynamodb/

2.4 Limitations of Existing System

While GT offers an efficient data labeling process, providing a quick and

straightforward method for acquiring labeled data, it lacks some valuable features

found in MTurk. This includes External HITs: tasks or jobs created by a Requester

that are hosted on an external website or application rather than within the MTurk

platform. Workers access and perform these tasks on external platforms, submitting

a verification code back to MTurk to obtain payment. This mechanism allows Re-

questers to utilize the MTurk marketplace for worker recruitment while conducting

tasks on their own systems with specific requirements or interfaces12.

The absence of other features, such as the ability to block subpar-performing

workers and selectively target specific crowd workers based on criteria like country

presents a significant drawback. Our research team at the lab, initially drawn to

Ground Truth for its features, encountered a substantial challenge—around 90% of

labeled data had to be discarded due to poor quality. This highlights a critical limi-

tation in GT’s functionality, necessitating enhanced control mechanisms and quality

management for optimal utility in machine learning applications. To overcome this,

we developed a customized solution on top of Ground Truth to effectively monitor

workers’ performance and block those who fall short.

2.5 Difference between MTurk and GT

In this section, we explore key distinctions between MTurk and GT, presenting

a comprehensive overview of their differences as shown in Table 2.1.

12https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_

ExternalQuestionArticle.html

14

https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ExternalQuestionArticle.html
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/ApiReference_ExternalQuestionArticle.html

Feature MTurk Sagemaker GT
Sandbox Testing Provides a sandbox for testing task

interfaces before launching jobs with
real workers.

No free sandbox; a private work-
force can be used for a fee. The
“Preview” button allows inspection
of the first 10 items, and selecting
“Submit” in “Preview” mode shows
a sample payload.

Worker Qualifica-
tions

Allows assignment of qualifications
to filter workers based on skills or
attributes.

Does not support worker qualifica-
tions directly. Assumes the use of a
private workforce with specific skills.
Already filters the MTurk workforce
for Requester convenience.

Rejection and
Bonuses Work

Requesters can reject HITs and pro-
vide bonuses for high-quality work.

Does not allow rejection or bonus-
ing. It assumes the curated public
workforce will deliver quality work,
and any issues must be addressed
through task refinement.

Worker-Requester
Communication

MTurk workers can contact the Re-
quester with questions about their
labeling job.

Public workers from MTurk on GT
cannot directly contact the GT Re-
quester with questions. When GT
tasks are posted to the public work-
force, the Requester is generically
identified as MLDataLabeler, and
any questions from workers do not
reach the GT Requester. After
labeling, the workerIDs associated
with each label are available with
the labeled data; however, the use of
MTurk APIs through GT user IDs is
restricted to contacting the workers
who performed the labeling.

External HITs MTurk supports external HITs, al-
lowing tasks to be run on the Re-
quester’s website for maximum flex-
ibility.

GT does not support external HITs.
However, Crowd HTML in GT pro-
vides interface flexibility to embed
the External HIT link. There is
no built-in mechanism to verify user
completion of the External HIT;
compensation is triggered upon task
submission.

Table 2.1: Differences between MTurk and Sagemaker GT

15

Chapter 3: Design Goals and Implementation

Challenges

This chapter discusses our primary design goals, focusing on worker quality

control, minimal disruption to existing workflows, and a user-friendly system design.

We also address key implementation challenges, providing insights into our strategic

resolutions for seamless integration and efficient worker management.

3.1 Design Goals

3.1.1 Enhance Workforce Management Controls and Automation

While MTurk provides fine-grained controls for managing the public work-

force, GT provides a simplified Requester experience, striving to curate the workforce

internally with fewer controls for Requesters. We seek to provide a an alternative

balance with the best of both. In particular, we want to enhance the degree of worker

management controls provided to Requesters in order to allow them to curate their

workforce, screening workers in and out, akin to MTurk. However, we also want to

simplify the Requester experience vs. MTurk in handling more of this within the sys-

tem, based on parameters specified by Requesters. In particular, we seek to provide

continuous monitoring of worker performance for custom tasks, based on Requester-

provided gold labels, accuracy function, and minimum accuracy thresholds. When

workers fail to meet minimum performance standards, the platform should restrict

access to future tasks as well as additional instances within a current annotation task.

3.1.2 Minimal Changes to the Current GT Workflow for Requesters

We seek to seamlessly integrate our system with minimal changes to the exist-

ing GT workflow for Requesters. This approach prioritizes the Requester’s familiarity

with the current GT framework, enabling them to transition effortlessly and maintain

16

efficiency in task design and data collection within the new GT framework.

3.1.3 A Simplified System Design Solution for Easier System Mainte-
nance

We seek to design a user-friendly system architecture that prioritizes simplicity,

ensuring ease of maintenance and seamless management for long-term sustainability.

3.1.4 Seamless Worker Experience for External Tasks on GT

Our objective is to seamlessly integrate External Tasks into GT, providing

crowd workers with a user experience similar to MTurk External Tasks. This involves

generating a completion code at the end of each external task, which workers are

required to submit on MTurk for verification and subsequent payment.

3.2 Challenges and Solutions

In order to successfully implement this infrastructure in a way which addresses

the design goals, the following challenges would need to be addressed;

3.2.1 Worker Identification

The first major challenge we encountered was the unique identification of work-

ers performing the labeling task. Initially, we explored asking workers to sign-in to

our system. We experimented with AWS Cognito 1, though another 3rd party sign-in

service, such as Google or Facebook, might also be used. While this solution would

support generalization across different GT workforces (public, private, and vendor),

our particular focus was the public workforce (i.e., MTurk). For this reason, we

found a more efficient solution: extracting MTurk Worker IDs directly from the URL

embedded in the iframe of our tasks on MTurk. This simplified both our system

1https://aws.amazon.com/cognito/

17

https://aws.amazon.com/cognito/

architecture and the experience for Workers, though limited support to GT’s public

workforce, as noted above.

3.2.2 Configuring Jobs for Performance Monitoring

Another challenge was how to integrate an accuracy check mechanism without

disrupting the Requester’s focus on task design and data collection, ensuring a similar

experience to the standard GT workflow. To address this, we utilized the TAGS fields in

GT, which allowed us to specify additional input and configurations that Requesters

can optionally provide when preparing their labeling jobs. The TAGS field became the

avenue for incorporating an accuracy functions and associated metadata to facilitate

accuracy checks. Furthermore, we implemented a pre-processing Lambda function

that calls the SageMaker API to read the configuration tags and send them to our

application before launching the job.

3.2.3 Blocking Poorly Performing Workers During Ongoing Jobs

We also needed to find a way to dynamically block workers from ongoing

jobs if we detect that they are not meeting performance standards specified by the

Requester (i.e., if their running accuracy falls below a given threshold). To overcome

this challenge, we briefly interrupt the final task submission on MTurk to perform

accuracy checks and prevent workers from undertaking any further tasks by overriding

the default submission, ensuring data quality throughout the labeling process.

Note that our blocking mechanism is “worker-friendly” in several respects.

First, as is standard in GT, workers are always paid for completed work; this differs

from MTurk where work can be rejected without payment. Blocking merely prevents

a worker from continuing to perform any additional labeling work on tasks launched

via our system. Second, while we use the term “block”, we do not use the MTurk API

to block workers in that platform’s sense of the term. In fact, worker blocking in our

system is entirely internal to it and thus completely invisible to GT and MTurk. This

18

means that worker blocking in our system has no negative repercussions for a worker’s

reputation on GT or MTurk. Workers accepting our tasks thus do not risk punitive

actions (e.g., potential account suspension) that could result if blocking signals were

conveyed back to the MTurk platform via its API. Of course, this lack of signaling

back to MTurk also means that we do not contribute to MTurk platform reputation

mechanisms that seek to detect and exclude truly bad actors.

3.2.4 Establishing a Mechanism to Validate Completion Codes for Ex-
ternal Tasks

Given GT’s absence of built-in support for external Tasks, implementing such

functionality required the development of a method to generate completion codes on

a third-party platform and communicate them to GT. In our context, particularly

focusing on Qualtrics, we conducted experiments and discovered a solution involving

the embedding of JavaScript code. This code is triggered during submission, facil-

itating the transmission of the completion code through an API. Workers are then

expected to submit this code for verification, confirming task completion and enabling

payment.

19

Chapter 4: Enhanced System Architecture and

Workflow

In this chapter, we discuss the architecture of our system, designed.

4.1 Overview of Enhanced System

The process flow within our enhanced solution is illustrated in Figure 4.1,

highlighting additional configurations and components integrated atop GT. These

supplementary settings are incorporated in the “TAGS” field during the configuration

of a labeling job. Figure 4.4 shows a sample Configuration of TAGS field from the

GT platform.

Figure 4.1: Overview of Enhance System

4.1.1 Accuracy Check Implementation

The Requester starts by implementing a accuracy check Lambda function spe-

cific to the labeling job and uploads a gold answers manifest necessary to an S3

bucket. AWS identifiers for lambda and S3 buckets used are added to GT in “TAGS”

20

fields.

4.1.2 Blocking Poor Performing Workers Identified from Existing System

Requesters may optionally provide a “block list” of worker IDs who should be

prevented from access task jobs. This list is uploaded to S3 in JSON format. AWS-

specific unique locations for these resources are configured in the job. The AWS

identifier of S3 buckets used is added to GT in ”Tag” fields.

4.1.3 Accuracy Threshold and Gold Answers Threshold

Requesters may optionally specify parameters to take advantage of continuous

performance monitoring and restricting task access for workers who do not meet

acceptance performance standards.

A gold answers count threshold specifies that accuracy checks should be

performed only after the worker has labeled a minimum number of data instances.

The intent here is to avoid premature blocking of workers in their initial work, when

they may be learning and when relative frequency estimates of worker accuracy have

the highest variance. While each job can specify a custom threshold, note that its

implementation is global, referring to the minimum number of data items that a

worker must label across all Requesters and their annotation tasks run on our engine.

Similarly, the gold accuracy threshold is specified on a per job basis but

measured across the lifetime of all work completed by a given Worker across Re-

questers and jobs on our engine.

4.1.4 Qualification (i.e. Timezone)

One feature of the framework is the ability to restrict access to tasks to USA-

workers, implemented by consulting the worker’s timezone as recorded by their web

21

browser. Specifically, The “countries-and-timezones” npm library1 has been used to

obtain the list of timezones for the US, which, in turn, retrieves this data from the

IANA timezones database2. Optionally, Requesters can specify a qualification for

USA-based workers, allowing only those with matching browser timezones to access

the tasks. A comprehensive list of timezones is included in Appendix 6.2.

4.1.5 Email Based Failure Notification

The Requester can optionally specify their email address to receive error alerts

for any failure associated with their Accuracy Lambda Functions. AWS CloudWatch

is configured for each Accuracy Lambda function to monitor the function logs, watch

for any errors, and trigger notifications when a failure occurs.

4.2 Internal Architecture of Worker Quality Control (WQC)
Engine

Once the labeling job is setup and launched, it proceeds to launch on GT using

the public workforce (i.e., MTurk), largely mirroring the Requester experience of the

standard GT system. Our Worker Quality Control Engine operates discreetly in the

background. It is tasked with capturing worker IDs of crowd workers involved in the

labeling task, actively monitoring their performance, and dynamically blocking those

who do not meet specified performance standards.

Note that worker blocking is entirely internal to our engine and invisible to

GT and MTurk; we do not use the MTurk API to block workers in the conventional

sense. This also means that workers accepting our tasks do not risk punitive actions

from Amazon (e.g., potential account suspension) that could result if blocking signals

were conveyed back to the MTurk platform via its API. It’s crucial to emphasize

that in the event of a failure in the Worker Quality Control Engine, the impact is

1https://www.npmjs.com/package/countries-and-timezones
2https://www.iana.org/time-zones

22

https://www.npmjs.com/package/countries-and-timezones
https://www.iana.org/time-zones

contained and does not disrupt the regular workflow. Workers won’t be aware of the

engine failure; they will seamlessly continue their tasks as the system transitions to

the current workflow. Workers will receive their due payments, and the labeled data

will be sent back to GT without interruption.

Our engine is designed as a network of interconnected components, foster-

ing seamless communication among themselves, AWS services, and crowd workers.

Therefore, to more rapidly develop and smoothly integrate the Engine we used AWS

Amplify. More details about these software components and their interactions are

explained below and shown in Figure 4.2.

This is built using React, the WQC Gateway serves as an interface that renders

the Worker Task Template designed by Requesters on MTurk. The WQC plays a

crucial role in coordinating interactions among various components of the engine. It

captures Crowd Worker IDs, performs historical and current job accuracy checks for

each worker on gold questions. Then if the Requester defined thresh-hold isn’t met

it coordinates the blocking of subpar workers.

4.2.1 Pre-Labeling Lambda Function

This function is invoked when a Labeling Job is launched. It reads accuracy-

related metadata configured in the GT Labeling Job and passes it to the WQC

Gateway, facilitating smooth communication within the engine.

4.2.2 Sagemaker APIs

In our solution, two critical APIs provided by GT play key roles. The ListTags

API facilitates the retrieval of accuracy-related configurations incorporated into the

TAGS field. Conversely, the RenderUITemplate API interprets the Liquid Template

Language embedded within the CrowdHTML of the Worker Task Template and dy-

namically loads unlabeled data to it. This process ensures the seamless rendering of

the template on web browsers, optimizing the user experience during the execution

23

Figure 4.2: Worker Quality Control (WQC) Gateway

24

of labeling tasks.

4.2.3 Worker Quality Control (WQC) APIs

This component contains Lambda Functions exposed through AWS API Gate-

way to process and update metrics for monitoring worker quality.

4.2.4 Worker Accuracy History

This component is hosted on DynamoDB; theWorker Accuracy History database

stores crowd worker IDs, their cumulative count of correctly answered gold answers,

and accuracy both overall and specific to each Labeling Job. This historical data is

referenced to identify and block workers with poor-quality work.

4.3 Labeling Job Deployment

To illustrate how these components seamlessly interact, let’s walk through the

deployment of a labeling job on GT using the WQC Engine as illustrated in Figure

4.2.

4.3.1 Requester Initiates Job Configuration

1. The Requester begins by creating an accuracy lambda function and uploading

a gold answers manifest, Worker Task Template, and a worker block list to the

S3 bucket dedicated to accuracy (#1.1).

2. Expanding on the existing workflow, the Requester leverages resources from the

previous step to configure the labeling job. This includes defining the accuracy

lambda function, gold answers, and accuracy threshold in the TAGS field of

the job configuration as illustrated in Figure 4.4. The Worker Task Template

URL is inserted into the Custom editor of GT (#1.2). A sample custom editor

is illustrated in Figure 4.3. The launch is subsequently initiated, and Figure

25

4.5 displays the resulting Worker Task on MTurk.

Figure 4.3: GT Custom Editor

4.3.2 Pre-Labeling Lambda Function Configuration

1. The Pre-Labeling Lambda Function uses the Sagemaker API named ListTags

to read configurations added to the TAGS field of the job configuration (#2.1).

2. The configurations are then passed to the WQC (WQC) Gateway (#2.2).

26

Figure 4.4: GT TAGS field

4.3.3 WQC Gateway Processing

1. The WQC Gateway retrieves the Worker Task Template location from the con-

figuration (#3.1) and fetches it from that location.

2. Leveraging the Sagemaker API RenderUITemplate, the WQC Gateway dynam-

ically compiles a Worker Task Template that can be rendered in a web browser.

This process involves interpreting the Liquid Template Language embedded in

the CrowdHTML (#3.2) and loading input data for labeling. Once the Worker

Task Template is prepared, GT dispatches the labeling task to MTurk (#4).

Figure 4.5 illustrates a sample labeling job launched on MTurk.

4.3.4 Worker Interaction

1. Once workers accept a labeling task, WQC captures the worker ID from the

web browser and performs several checks (#7.1).

27

Figure 4.5: Sample labeling Job - Work Task

2. It checks whether the worker is not part of the block list, verifies if the worker

meets the qualification criteria (e.g., timezone), and evaluates the worker’s cur-

rent overall accuracy score. If the overall accuracy, based on past performance,

is found to be below the threshold, the worker is not allowed to proceed.

3. If all criteria are met, it proceeds to write the Worker ID to the database (#7.2).

4.3.5 Task Completion and Accuracy Check

1. On completion of each task, an accuracy check is performed for the ongoing

labeling job.

2. If the accuracy is found below the threshold, WQC blocks the users from pro-

ceeding further in the job. Workers are compensated for the tasks completed

(#8.1).

3. The accuracy check is conducted by WQC APIs (#8.2), invoking the accuracy

28

lambda function to compare against the gold answers manifest provided by the

Requester (#8.3).

4. Once the check is completed, the result is written back to the database (#8.4),

and a cumulative accuracy score is calculated based on the number of correctly

answered gold questions. A decision is then made on whether to block the

worker for the ongoing Job (#8.1).

4.3.6 Accuracy Lambda Function Failure Monitoring

While the labeling job is in progress and accuracy checks are being performed

for each task, AWS CloudWatch has been configured on the Accuracy Lambda Func-

tion to proactively poll the function’s logs, look for any failures, and alert the requester

in case of a failure (#8.1). The requester can optionally specify their email address

to receive error alerts.

4.3.7 Communicating Blocking to Workers

Workers who do not meet Timezone-based Qualification criteria or minimum

performance standards are blocked from task access. When either event occurs, they

are shown the corresponding messages below:

Timezone ”Unfortunately, this task is only for the USA region. Therefore, you may

not continue to perform this task. Please release the job.”

Performance ”Unfortunately, you have missed too many control questions. Conse-

quently, you may not continue to perform this task. Please release the job.”

As shown above, both messages end by requesting that the worker release the

job. This reflects a notable limitation of the system’s inability to enforce job re-

leases, thereby necessitating reliance on workers for voluntary compliance in releasing

labeling jobs. This limitation is further discussed in Chapter 6.1.

29

Chapter 5: Qualtrics Integration to GT

In Chapter 2, we explored the distinct capabilities of MTurk and GT, with one

notable difference being the absence of support for External HITs in GT. Building

upon this exploration, this chapter addresses the limitation in GT to accommodate

external Human Intelligence Tasks (HITs) and delves into the integration of Qualtrics

surveys onto the GT platform.

5.1 Motivation for Qualtrics Integration

Third-party surveys, particularly those utilizing platforms like Qualtrics, come

with established infrastructure, offering familiarity to both requesters and workers.

These surveys actively seek participants, aligning with the participant availability

on GT. Despite GT’s lack of inherent support for external HITs, the incorporation

of Crowd HTML provides valuable interface flexibility, enabling the embedding of

External HIT links. However, a challenge emerges due to the absence of a built-in

mechanism for verifying user completion of the External HIT, leading to compensation

triggered solely upon worker submission. This integration aims to enhance efficiency

in participant engagement, aligning with the participant search capabilities offered

by a platform like GT.

5.2 Overview of Qualtrics Integration to GT

To address the challenge of verifying participant completion in the absence of

a built-in mechanism, we developed a robust solution. Here is an overview of the

integrated systems:

1. The Requester initiates the process by designing a survey (a labelling task)

within the Qualtrics platform to capture participant data. A submission block

30

Figure 5.1: Overview of Qualtrics Integration to GT

is incorporated at the survey’s conclusion, marking its completion. This block

ensures participants are aware of the survey’s end, generating a completion code

and embedding JavaScript to send this code back to the Integration Engine

(#1).

2. Once the survey is ready, its link is configured in sagemaker (#2).

3. We have developed a React-based engine named the Integration engine, facili-

tating the coordination of job launch with the survey link and capturing as well

as verifying the completion code (#3-#4).

4. As the job becomes available on Mturk, workers accept and work on the task.

Upon completing the survey, they receive a completion code, which they provide

to the Mturk labeling job for verification and payment (#5-#7.1).

5. The completion code is also sent to the Integration engine by the survey, stored

in the database (#7.1). When the worker submits the completion code, it’s

verified against the database (#9.1-#9.2). If valid, task completion is accepted,

and the worker receives payment.

5.3 Challenges and Opportunities

In the GT platform, crowd workers receive compensation for individual tasks

within a labeling job, with payment configurations ranging from $0.012 for low-

complexity tasks to $1.20 for high-complexity tasks. However, the integration of

31

a Qualtrics survey link into a GT labeling job consolidates multiple tasks within the

job into a single survey, where each question corresponds to a GT task, resulting

in a single, complex survey for data collection. Workers on GT are accustomed to

task-specific compensation, and consolidating tasks into a single survey might deter

participation, especially in surveys perceived as complex with compensation below

their expectations.

Nevertheless, the appeal of this integration could be enhanced if Amazon im-

proves incentives on GT or allows Requesters to configure compensation more flexibly

in the future. This limitation underscores the significance of aligning survey complex-

ity with worker compensation expectations for optimal participation and maintaining

result quality.

Moreover, by leveraging the existing infrastructure, opportunities arise for

potentially integrating other surveys, such as SurveyMonkey. Requesters can follow

analogous steps, generating a completion code and transmitting it to our integration

engine exposed through API. Workers can then follow the same streamlined process,

presenting the code for job verification.

32

Chapter 6: Discussion and Conclusion

In the process of implementing and deploying our solution, several key reflec-

tions, limitations, and considerations have emerged, paving the way for a comprehen-

sive discussion.

6.1 Discussion

1. Single Threshold Configuration: In our system, Requesters set an accuracy

threshold to filter out poorly performing crowd workers. We have implemented

two levels of filters to assess workers—examining their past performance and

ongoing job performance. For instance, Requesters might decide on a specific

accuracy threshold, such as 0.8, for a labeling task. When crowd workers ac-

cept the labeling job, this threshold is applied to restrict their participation

based on their past performance. If they meet the threshold, demonstrating

satisfactory past performance, they are allowed to proceed with the job. As the

job progresses, this same threshold is consistently used to prevent workers from

continuing in the job if they fall below the threshold. Looking ahead, there’s

potential to explore the incorporation of separate thresholds for these different

aspects of the process.

2. Mitigating Variability in Worker Evaluation: Continuing with the pre-

vious point, our system employs two levels of evaluation—assessing both past

performance and ongoing job performance—to filter out poor worker perfor-

mance. Introducing gold questions in the labeling job allows us to evaluate

performance against correctly answered gold questions. However, relying solely

on this evaluation may lead to premature worker blocking due to the inherent

variability in a limited sample size of correctly answered gold questions. The

use of a small sample size, if employed in isolation, could introduce variability.

33

Therefore, our approach aims to mitigate this variability by implementing a

minimum gold count in assessing crowd workers’ performance. This measure

allows workers to build a substantial performance history before facing potential

early consequences. The minimum gold count criterion is set at 30 for past

performance and is determined flexibly by Requesters for ongoing jobs. This

ensures a more robust and reliable assessment, accounting for the potential

variability inherent in small sample sizes.performance is evaluated.

3. Impact of Blocking Mechanism on Worker Behavior on GT: As high-

lighted in Chapter 2.5, MTurk allows Requesters to reject poor-quality HITs,

a feature notably absent in GT. Consequently, Crowd workers on GT, sourced

through MTurk, have grown accustomed to completing tasks without the loom-

ing possibility of rejection. The introduction of the blocking mechanism on GT

represents a significant departure, providing a direct means to influence worker

behavior. This raises a crucial question: does blocking effectively motivate

workers to reach higher standards, or are we primarily identifying and retaining

those who already demonstrate commendable behavior? Looking ahead, ex-

perimentation is imperative to comprehensively understand the impact of the

blocking mechanism on worker behavior. This introduces a nuanced exploration

of whether the platform can actively encourage workers to consistently deliver

high-quality performance. The prospect of shaping worker behavior on GT in-

troduces a dynamic element, necessitating ongoing inquiry and experimentation

to optimize the platform’s effectiveness in fostering a culture of excellence.

4. Analyzing Job Acceptance Through a Transparency Experiment: In

our investigation into the impact of the blocking mechanism on worker ac-

ceptance, we conducted an experiment focusing on transparent communication

about performance monitoring. We explicitly stated in the task description that

worker performance would be monitored, with subpar work potentially leading

to exclusion from labeling jobs. We observed a significant reduction in accep-

34

tance rates on Mturk. We confirmed that workers were reading the tasks by

tracking the job previews on our infrastructure.

We believe this hesitancy could be connected to the relatively low pay for label-

ing jobs hosted through GT, ranging from $0.012 for low-complexity tasks to

$1.20 for high-complexity tasks for high-complexity tasks, along with the fear of

being monitored. Working on a low-paid job with the risk of potential blocking

might be unattractive, and there could be concerns about the impact on their

Mturk account, affecting their source of income. Despite clarifying that this

would not affect their Mturk performance history and emphasizing its impact

on the labeling job, we did not observe an improvement. The combination of

lower compensation and scrutiny may have reduced the appeal for workers to

undergo monitoring, influencing task acceptance rates.

5. Impact of the Blocking Mechanism on Labelling Job Outcomes: Re-

questers in our research lab reported an improvement in data label quality,

resulting in a substantial reduction in the amount of discarded labeled data

from 90% to 10%. However, we also observed that labeling jobs took longer to

complete compared to those hosted directly on GT without our infrastructure

layer, occasionally resulting in incomplete tasks and missing labels in the data.

We speculate that this is due to workers not releasing the tasks after being

blocked so others could not pick them up. One potential solution to address

these challenges is to implement an automatic relaunch of the job, repeating

the process until the desired number of completions is achieved.

6. Evaluation of Crowd Worker Experience on MTurk: To evaluate the

crowd worker experience, we launched dummy labeling jobs on MTurk and

attempted to utilize a dummy MTurk worker account to work on them. How-

ever, this account had restricted privileges, allowing us only to preview jobs on

MTurk, providing limited visibility into the worker’s perspective of the task.

35

For initial testing, we employed this account to ensure the accurate rendering

of labeling tasks.

Another limitation that surfaced in MTurk job preview mode was that our

software layer on GT couldn’t capture Worker IDs to identify the worker pre-

viewing the job. The absence of worker IDs during task previews constrained

the comprehensive testing of features in our system.

Since evaluating the crowd worker experience on MTurk was limited, we instead

relied on test labeling jobs being accepted by real crowd workers and tracked

their activity through infrastructure logs and the performance history database

for a retrospective analysis of the worker workflow. The logs and database

provided comprehensive records of worker IDs, activities (including job accep-

tance), and responses to gold questions, which were logged for in-depth analysis.

7. Exploring External HITs Beyond the Current Framework: As explored

in section 5.3, there exists a potential to expand the integration to include var-

ious third-party surveys, such as SurveyMonkey. The procedure for Requesters

remains similar, involving the creation of a completion code and its transmis-

sion to our integration engine through an accessible API. Workers can similarly

adhere to this straightforward process by presenting the generated code for job

verification.

6.2 Conclusion

In this study, our primary focus was to address the disparities between the

MTurk and GT platforms. We achieved this by implementing a robust software

infrastructure on GT, introducing Mturk-like features such as worker performance

monitoring, automatic task access restriction for subpar performance, geographic-

based constraints limiting task access to US-based workers, and the ability to conduct

external tasks off-platform. Importantly, this implementation maintains a minimal

impact on the Requester’s user experience and remains inconspicuous to the worker.

36

As a result of our efforts, our research team observed a significant reduction

in discarded data, dropping from 90% to just 10%, showcasing the tangible impact of

our solution. The team reported a seamless workflow experience, enabling them to

focus on labeling task design and data collection without dedicating substantial time

to learning the new system.

However, unforeseen challenges emerged that were not part of the initial con-

siderations. Workers, now aware of performance monitoring and blocking, exhibited

reluctance to work on the labeling jobs. This, coupled with the issue of low pay on

GT, resulted in a low job acceptance rate. Additionally, jobs took longer to com-

plete or tasks were left incomplete compared to those hosted directly on GT without

our infrastructure layer. Highlighting the complex interplay between implemented

solutions and human factors, these hurdles emphasize the ongoing need for careful

consideration in system implementation. While success was achieved in the system’s

functionality, the introduction of human elements added additional layers of complex-

ity that warrant further exploration and refinement in future implementations.

37

Appendix A

In this appendix, you can find the link to the GitHub repository containing

the source code.

Code Repository Link

The source code for the project is available on GitHub at the following link:

https://github.com/utir/gt/tree/main/gt-custom-ui

User Guide Link

The user guide of our system is available at the following link:

https://docs.google.com/document/d/1jzaRwabWoMBtI1MgmSbScGRt6zgju9wnsGC3h8e0ZNQ/

edit?usp=sharing

List of Timezones

• America/Adak

• America/Anchorage

• America/Boise

• America/Chicago

• America/Denver

• America/Detroit

• America/Indiana/Indianapolis

• America/Indiana/Knox

38

https://github.com/utir/gt/tree/main/gt-custom-ui
https://docs.google.com/document/d/1jzaRwabWoMBtI1MgmSbScGRt6zgju9wnsGC3h8e0ZNQ/edit?usp=sharing
https://docs.google.com/document/d/1jzaRwabWoMBtI1MgmSbScGRt6zgju9wnsGC3h8e0ZNQ/edit?usp=sharing

• America/Indiana/Marengo

• America/Indiana/Petersburg

• America/Indiana/Tell City

• America/Indiana/Vevay

• America/Indiana/Vincennes

• America/Indiana/Winamac

• America/Juneau

• America/Kentucky/Louisville

• America/Kentucky/Monticello

• America/Los Angeles

• America/Menominee

• America/Metlakatla

• America/New York

• America/Nome

• America/North Dakota/Beulah

• America/North Dakota/Center

• America/North Dakota/New Salem

• America/Phoenix

• America/Sitka

• America/Yakutat

• Pacific/Honolulu

39

Further Readings

Salman Ahmad and et al. The jabberwocky programming environment for struc-

tured social computing. In UIST 2011, 2011. (ManReduce, Dormouse, & Dog

Programming Languages).

Daniel W. Barowy, Charlie Curtsinger, Emery D. Berger, and Andrew McGre-

gor. Automan: A platform for integrating human-based and digital computation.

Communications of the ACM, 59(6):102–109, 2016. [PDF] [Website w/ Slides &

Source].

Patrick M. De Boer and Abraham Bernstein. Efficiently identifying a well-

performing crowd process for a given problem. In ACM CSCW, pages 1688–1699,

2017.

Michael Franklin and et al. Crowddb: Answering queries with crowdsourcing. In

ACM SIGMOD 2011, pages 61–72, 2011.

P. Minder and A. Bernstein. Crowdlang: A programming language for the sys-

tematic exploration of human computation. Social Informatics, pages 124–137,

2012.

A. Parameswaran and N. Polyzotis. Answering queries using humans, algorithms

and databases. In 5th Biennial Conference on Innovative Data Systems Research

(CIDR), 2011.

Aditya Parameswaran et al. Deco: Declarative crowdsourcing. In Proceedings of

the 21st ACM International Conference on Information and Knowledge Manage-

ment (CIKM), pages 1203–1212, 2012.

Jurairat Phuttharak and Seng W. Loke. Logiccrowd: A declarative programming

platform for mobile crowdsourcing. In Trust, Security and Privacy in Computing

and Communications (TrustCom), pages 1323–1330, 2013.

40

Rajan Vaish, Kate Wyngarden, Jing Chen, Brian Cheung, and Michael S Bern-

stein. Twitch crowdsourcing: crowd contributions in short bursts of time. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(CHI), pages 3645–3654, 2014.

41

	Chapter 1: Introduction
	Chapter 2: Sagemaker Ground Truth: Capabilities and Limitations
	Overview of Existing System
	SageMaker Ground Truth: Concepts and Vocabulary
	Additional AWS Building Blocks
	Limitations of Existing System
	Difference between MTurk and GT

	Chapter 3: Design Goals and Implementation Challenges
	Design Goals
	Enhance Workforce Management Controls and Automation
	Minimal Changes to the Current GT Workflow for Requesters
	A Simplified System Design Solution for Easier System Maintenance
	Seamless Worker Experience for External Tasks on GT

	Challenges and Solutions
	Worker Identification
	Configuring Jobs for Performance Monitoring
	Blocking Poorly Performing Workers During Ongoing Jobs
	Establishing a Mechanism to Validate Completion Codes for External Tasks

	Chapter 4: Enhanced System Architecture and Workflow
	Overview of Enhanced System
	Accuracy Check Implementation
	Blocking Poor Performing Workers Identified from Existing System
	Accuracy Threshold and Gold Answers Threshold
	Qualification (i.e. Timezone)
	Email Based Failure Notification

	Internal Architecture of Worker Quality Control (WQC) Engine
	Pre-Labeling Lambda Function
	Sagemaker APIs
	Worker Quality Control (WQC) APIs
	Worker Accuracy History

	Labeling Job Deployment
	Requester Initiates Job Configuration
	Pre-Labeling Lambda Function Configuration
	WQC Gateway Processing
	Worker Interaction
	Task Completion and Accuracy Check
	Accuracy Lambda Function Failure Monitoring
	Communicating Blocking to Workers

	Chapter 5: Qualtrics Integration to GT
	Motivation for Qualtrics Integration
	Overview of Qualtrics Integration to GT
	Challenges and Opportunities

	Chapter 6: Discussion and Conclusion
	Discussion
	Conclusion

	Appendix A
	Code Repository Link
	User Guide Link
	List of Timezones

	Further Readings

