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ABSTRACT

We study how to best use crowdsourced relevance judgments
learning to rank [1, 7]. We integrate two lines of prior work:
unreliable crowd-based binary annotation for binary classi-
fication [5, 3] and aggregating graded relevance judgments
from reliable experts for ranking [7]. To model varying per-
formance of the crowd, we simulate annotation noise with
varying magnitude and distributional properties. Evalua-
tion on three LETOR test collections reveals a striking trend
contrary to prior studies: single labeling outperforms con-
sensus methods in maximizing learner accuracy relative to
annotator effort. We also see surprising consistency of the
learning curve across noise distributions, as well as greater
challenge with the adversarial case for multi-class labeling.
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1. INTRODUCTION
Crowdsourcing platforms like Amazon Mechanical Turk1

are changing the dynamics of how we train our learners.
While labeled data is no longer as difficult to obtain, indi-
vidual labels tend to be noisier and require greater quality
assurance, e.g. by requesting redundant labels from mul-
tiple annotators and resolving disagreements automatically
via consensus [5, 3]. When annotation is noisy, how do we
best utilize labeling effort to maximize learning? Do we la-
bel additional examples (improve coverage), or request more
labels for already labeled examples to reduce label noise [5]?
How should we compute consensus with such multi-labeling?
For learning to rank [1, 7], how sensitive is the learner to dif-
ferent quanitities and distributions of label noise?

1https://www.mturk.com
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Prior work compares single labeling (SL) each example
to multi-labeling for binary classification [5]. Given a fixed
seed set of N singly-labeled examples and an infinite pool of
unlabeled examples, SL grows this set of labeled examples
with each new label (to increase example coverage), whereas
multi-labeling requests additional labels for examples in the
seed set (to increase label accuracy). With 2N labels, SL
covers 2N examples with a single label while multi-labeling
covers the N examples with two labels each in round-robin
fashion. Simple majority vote (MV) is used for consensus.

Our prior work [3] on binary classification compared SL to
multi-labeling with Naive Bayes (NB) [6] as well as MV. We
studied effects of modeling vs. ignoring worker accuracy and
saw across methods that modeling worker accuracy signif-
icantly improved classifier accuracy, indicating a limitation
of the oft-used simple majority vote with noisy annotation.
While a variety of crowd behaviors and noise may arise in
practice, both prior studies [5, 3] assumed assumed uniform
noise, as well as each label coming from a unique annota-
tor. Other worker behaviors and noise characteristics may
be observed in practice and could be usefully modeled.

Prior work by Yang et al. [7] studied learning to rank (with
graded judgments) rather than binary classification, evalu-
ating SL, MV, and other consensus algorithms for ranking
with LambdaRank. They assumed labels come from reliable
experts and provided limited analysis of the relationship be-
tween consensus method and the resulting learning curve.

This paper extends our earlier study from binary classifi-
cation to learning to rank, and we consider learning under
different noise quantities and distributions. We compare SL,
MV, and NB for consensus, and we measure resulting List-
Net [1] ranking accuracy on three LETOR [4] collections:
OHSUMED, MQ2007 and MQ2008. We observed similar results
across all three and so present results on OHSUMED only due
to space constraints. We respect LETOR’s standard 5-fold
partition with 3 training folds and the others for validation
and testing. While training labels come entirely from the
crowd, we make a significant assumption of having expert
labels for the entire validation fold (≈ 3500 examples). Note
this validation data is used only by ListNet, not by consen-
sus methods. We also use expert labels as ground truth for
evaluation. This reflects a scenario in which more costly ex-
pert annotation suffices for validation and testing, but larger
volumes of more affordable data is desired for training.

We use a seed set size of N = 800 (potentially noisy)
singly-labeled examples, reflecting a minimal training size to
obtain stable results. The learning curve is then measured
as a function of adding L additional labels. For each setting



L 0 800 1600 3200 6400 Avg

No noise (SL) 30.9 33.5 36.4 36.9 38.3 36.3

Distribution
L SL MV NB

Rank Rank Label Rank Label

N (0.7, 0.2)

0 21.2
800 23.5 27.6 61.8 25.2 62.3
1600 29.0 27.3 63.6 28.6 75.3
3200 33.0 27.0 70.2 30.6 90.6
6400 35.3 26.4 77.0 30.4 96.9
Average 30.2 27.1 68.1 28.7 81.2

N (0.5, 0.2)

0 21.1
800 23.7 24.5 52.6 22.2 54.7
1600 28.8 28.0 54.2 25.6 66.4
3200 31.7 24.5 55.1 29.1 81.3
6400 36.1 26.5 58.4 31.0 90.1
Average 30.1 25.9 55.0 27.0 73.1

N (0.4, 0.2)

0 17.0
800 19.5 22.6 46.8 22.9 49.0
1600 25.8 24.0 44.7 23.9 61.4
3200 30.4 22.7 44.4 28.4 76.1
6400 34.0 21.9 39.5 27.0 85.7
Average 27.4 22.8 43.85 25.6 68.0

lnN (0.4, 0.2)

0 18.4
800 21.1 22.3 40.6 21.7 41.1
1600 26.9 23.4 40.1 22.2 40.0
3200 27.9 19.8 35.8 21.7 37.1
6400 28.6 19.7 30.5 21.8 36.7
Average 26.1 21.3 36.7 21.8 38.7

U(0.2,0.6)

0 17.7
800 19.0 21.3 37.4 20.5 38.5
1600 26.6 21.1 33.8 17.1 35.6
3200 26.7 18.8 29.6 19.8 35.2
6400 26.4 17.3 23.9 23.2 32.4
Average 24.7 19.6 31.1 20.1 35.4

Table 1: Label accuracy and ListNet rank accuracy (%)

achieved by SL vs. MV and NB consensus methods for vary-

ing L and quantity and distribution annotation noise (nor-

mal N(µ, σ), log normal lnN (µ, σ), and uniform U(min, max).

Expected label accuracy for SL is defined by noise parame-

ters (mean µ or min+max

2
; we report empirical accuracy for

MV and NB. L additional labels are added to the seed set

of N = 800 singly-labeled examples. We also report average

accuracy of each method across L = {800,1600,3200,6400}. We

repeat experiments 5 times and average for stability.

of L, we compute consenus labels (no-op for single labeling)
and then train ListNet using them. We report label accuracy
achieved as well as the resultant ranking accuracy achived
by ListNet. We measure this across different noise settings.

We simulate noisy annotation via a fixed-size pool of 100
annotators who select between C = 3 possible labels (ternary
graded relevance classes: non-relevant, relevant, or highly
relevant). Each annotator i has a unique parameter pi de-
noting the probability he will produce the correct label for a
given example. Otherwise he produces one of the other two
possible labels (uniformly) at random. New labels are gen-
erated by selecting an annotator i from the pool at random
and then generating a label according to pi as just described.

Results without annotation noise and for five possible
noise settings are shown in Table 1. Noiseless ranking accu-
racy with N = 800 L = 0 provides an approximate upper-
bound for MV and NB consensus results across settings of
L since perfect consensus would restore us to the noiseless
condition. While level of noise clearly impacts the learning
curve (Figure 1), we see relatively little impact of different
noise distributions on ranking accuracy. Overall, it seems

when average accuracy exceeds 50%, sufficient “good” anno-
tators exist to overcome the noise of their less reliable peers.

Between N = 800 and N = 1600, SL begins to con-
sistently outperform NB and MV across noise distribu-
tions, with greater example coverage apparently more im-
portant than label accuracy. Effects here may be task-
specific or learner-specific, and having expert validation la-
bels may benefit SL more than MV and NB since SL label-
ing accuracy on training examples is lowest. We aso see NB

typically outperform MV across noise distributions.
We define an adversarial annotator for multi-class anno-

tation with C classes as one whose pi < 1

C
. In such cases,

a simple way fix is to randomly pick one of the other C − 1
classes. We saw little benefit from doing so. Suppose an an-
notator has accuracy 0.2. Assuming a uniform prior over
remaining classes, each has probability 0.4, so not much
higher than the class originally labeled. We expect more
benefit from handling adversarial labeling when accuracy is
extremely low (i.e. strongly anti-correlated), or when we
have a better prior for selecting between remaining classes.

Figure 1: Consensus label accuracy vs. ranking accuracy of

the ListNet learner shows a strong linear relationship across

consensus methods and noise distributions considered (not

shown). This suggests one can simply optimize for label accu-

racy with confidence of improving rank accuracy as a result.

Future work includes: a similar study with real crowd
workers and data, developing more representative models
for simulation, studying additional consensus methods and
noise settings, and dynamic example selection for labeling.
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