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Abstract

While recent work has shown that a worker’s performance
can be more accurately modeled by temporal correlation in
task performance, a fundamental challenge remains in the
need for expert gold labels to evaluate a worker’s perfor-
mance. To solve this problem, we explore two methods of uti-
lizing limited gold labels, initial training and periodic updat-
ing. Furthermore, we present a novel way of learning a pre-
diction model in the absence of gold labels with uncertainty-
aware learning and soft-label updating. Our experiment with
a real crowdsourcing dataset demonstrates that periodic up-
dating tends to show better performance than initial training
when the number of gold labels are very limited (< 25).

Keywords: crowdsourcing, human computation, predic-
tion, uncertainty-aware learning, time-series modeling

Introduction
While crowdsourcing offers a cost-efficient and scalable
method to collect human labels via the Internet, the qual-
ity of work performed by the crowd can greatly vary across
individuals, which risks compromising overall data quality.
As in traditional employment, a common management strat-
egy is to evaluate the performance of each worker on a regu-
lar basis, enabling use of various carrots (e.g., performance-
based incentive payments) and sticks (e.g., dismissal of
weak performers). In a crowdsourcing context, weighted
voting based on individual performance is common. More-
over, if we can accurately predict future job performance
based on past evaluations, we can route tasks to those in-
dividuals predicted to perform well (Jung 2014), or make
proactive interventions before errors occur, helping workers
to learn before mistakes are actually made.

Recent work has shown that a worker’s performance can
be more accurately modeled by abandoning traditional i.i.d.
assumptions between tasks and instead modeling temporal
correlation in task performance (Donmez, Carbonell, and
Schneider 2010; Krause and Porzel 2013; Jung, Park, and
Lease 2014; Jung and Lease 2015). However, a fundamen-
tal challenge remains in the need for expert “gold” labels
to evaluate a worker’s performance. As Bragg et al. (2014)
opined, prior work has often made a strong assumption that
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all examples have known gold labels readily available to im-
mediately evaluate each worker response as it arrives. Of
course, if we already had gold labels in-hand for all exam-
ples, there would be no need for collecting additional labels
from the crowd.

A common alternative strategy is to ask multiple work-
ers to answer the same question, aggregate responses, and
then evaluate each individual’s agreement with the aggre-
gate. This poses a fundamental tradeoff in plurality: asking
more workers to answer the same question increases aggre-
gate accuracy at the cost of increased redundancy. Also, un-
like use of expert gold, it cannot safeguard against system-
atic crowd bias or crowd collusion. Most pertinent in this
work, this strategy is difficult to employ in an online setting
because it is unrealistic to assume that all workers assigned a
given example will label it at the same time, or that a worker
would happily wait for all others to complete the task before
anyone could proceed to the next task (Jung 2014).

We consider how to best estimate a temporal model of
worker performance when supervision is more realistically
limited. Intuitively, if we have only a smaller sample of gold
questions with which to check worker correctness, our esti-
mate of worker accuracy will have larger variance (i.e., in-
creased uncertainty).

Methodology. To solve this problem, we explore how to
maximally utilize limited gold labels and how to update a
prediction model in the absence of gold labels. Our study
begins with an investigation of two method of utilizing lim-
ited gold labels. The first method, initial training (INIT),
uses all of the given gold labels to estimate a worker’s label
correctness in the initial phase. The second alternative ap-
proach, periodic updating (PER), uses gold labels to check
label correctness periodically. The key insight in periodic
updating is that a worker’s temporal performance may be
non-stationary (ie. exhibiting vayring correctness over time),
which may limit the effectiveness of training the model only
on the worker’s initial temporal patterns.

We also present a novel way of learning a prediction
model in the absence of gold labels with uncertainty-aware
learning (Bootkrajang and Kaban 2013b) and soft-label up-
dating. The idea is, for training examples without a known
gold label, to generate a pair of positive and negative train-
ing examples with instance weights based on a probability of
the worker producing a correct and incorrect labels. We con-



sider two approaches for estimating uncertainty: one based
on model prediction scores and one based on the confidence
interval of worker’s accuracy.

Finally, our study concludes with an investigation of in-
creasing gold labels vs. use of uncertainty-aware learn-
ing with soft labeling. We compare the relative improve-
ment in prediction by adding a single gold label vs. using
uncertainty-aware learning.

We evaluate our models on a real crowdsourcing dataset
of binary classification. Results demonstrate that periodic
updating method tends to show better prediction than initial
training when the number of gold labels are very limited
(<25). Furthermore, we find that uncertainty-aware learn-
ing with soft-label updating brings substantial improvement
to prediction accuracy with limited supervision. Finally, we
find that uncertainty-aware learning with soft-label updating
shows substantially higher contribution to the improvement
of prediction accuracy than the increase in gold labels does.

We investigate the following research questions:
RQ1: Initial training vs. Periodic updating. How can we

best use limited gold labels for model training? When do
different methods perform better?

RQ2: Uncertainty-aware learning. To what extent can we
effectively update models without supervision? How does
uncertainty-aware learning impact prediction accuracy?

RQ3: Additional gold vs. uncertainty-aware learning.
How does adding a single gold label influence prediction
accuracy vs. uncertainty-aware learning with soft labels?

Problem
We begin with a binary label acquisition problem in crowd-
sourcing. Suppose that a worker has produced a label set L
of n labels (|L| = n), and that each label li may or may not
have a corresponding gold label gi, which belongs to a gold
label set G. Our task is to predict whether or not a worker’s
next judgment will be correct, as defined by agreement with
gold labels. In this work, we assume an objective labeling
task for which each example has only a single correct label,
indicated by the gold label set.

The correctness of the ith label is denoted as yi ∈ {0, 1},
where 1 and 0 represent correct or not. Label correctness yi
is computed by comparing a worker’s label li to its corre-
sponding gold label gi. Thus, the labeling performance of
a worker can be represented as a sequence of binary obser-
vations, y = [y1 y2 . . . yn]. For example, if a worker
produced five labels and erred on the first and third respec-
tively, then her binary performance sequence is encoded as
y = [0 1 0 1 1].

We generate a multi-dimensional feature vector, xi =
[x1i x2i . . . xmi] per time i and use xi as an input of
a prediction function f . We adopt the same features used
in (Jung and Lease 2015): observable and latent features
about crowd assessors’ annotation performance and behav-
ior. However, our feature generation process is different
from their study in a sense that feature generation relies
upon the availability of gold labels. For instance, when a
gold label is provided, we generate the same features as
Jung’s study. If a gold label is not provided, we include

only the subset of features which do not require gold la-
bels to be computed. Specifically, in such cases we omit
their accuracy-based features and compute only their behav-
ioral features. Our final goal is to find a prediction function
f for each worker and use the function f for predicting each
worker’s next label correctness.

Prior work has typically assumed the existence of gold la-
bels associated with all of the labels, (|L| = |G|) (Donmez,
Carbonell, and Schneider 2010; Jung, Park, and Lease 2014;
Jung and Lease 2015; Krause and Porzel 2013). However,
this assumption does not hold true in practice since one of
fundamental reasons for crowdsourcing is collecting labels
that we do not have. Furthermore, many studies on online al-
gorithms in quality assurance in crowdsourcing (Tran-Thanh
et al. 2014; Welinder and Perona 2010) make a very strong
assumption that a worker’s label correctness can be checked
instantly at each time step (Bragg et al. 2014). We aim to
relax this unrealistic assumption by limiting the number of
gold labels (|G| < |L|) to be used for measuring the label
correctness of crowd labels. This is consistent with common
practice of injecting occasional questions with known an-
swers into each worker’s task queue in order to assess per-
formance. This also resembles a traditional semi-supervised
setting in which we seek to learn from unlabeled examples
as well as labeled examples, though here we have an addi-
tional temporal dimension.

Prior work in item response theory (IRT) (Hambleton,
Swaminathan, and Rogers 1991) seeks to assess each indi-
vidual’s temporal learning. However, our approach differs
from IRT in that our models seek to capture latent dynam-
ics by taking account of temporal correlation and additional
variables. In addition, IRT typically assumes that pairs of
questions and answers are provided ahead of a test. These
assumptions may not be directly applicable to crowdsourc-
ing settings since if gold labels are in-hand for all examples,
collecting additional labels from the crowd serves no useful
purpose.

The closest prior work we are aware of on temporal mod-
eling of crowd work with limited supervision, by Krause and
Porzel (2013), proposes a method to estimate a worker’s re-
sponse quality by measuring agreement with gold labels as
well as using a sliding window over time. However, they as-
sume plurality-based gold estimation, which, as discussed
earlier, is difficult to employ in an online setting. Further-
more, this study only leverages given gold labels to estimate
worker performance in the beginning while there may ex-
ist different ways to use gold labels for worker performance
estimation such as periodic checking.

Challenges from limited supervision
Limiting the number of gold labels raises critical questions
about how to measure label correctness for model update.
Firstly, we face a challenge of measuring label correctness
without gold labels. If we assume offline analysis (after
data collection) and a reasonably high-degree of plurality
(the number of worker assigned to the same question), then
it is possible to measure a worker’ label correctness with
pseudo-gold labels which can be generated by aggregating
multiple labels from workers (Ipeirotis and Provost 2013;
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Figure 1: Three sequential learning methods of a prediction model for crowd work quality with limited supervision.

Sheshadri and Lease 2013).
However, when it comes to measuring a worker’s label

correctness online (during data collection), as noted earlier,
it is unrealistic to assume that all workers label the same task
and they are willing to wait for a next task to be assigned.
Moreover, the confidence of pseudo gold labels is sensitive
to the number of workers per task. Ideally, we would avoid
requiring any plurality and be able to rely upon an individual
worker with reliable (predictable) behavior.

Secondly, we should consider how to best use limited gold
for training a prediction model. Using all of the given gold
labels for initial training is simple, but prediction perfor-
mance may suffer when a worker’s temporal performance
drifts dynamically over time (non-stationary). A prediction
function f trained in this fashion may drift further from the
true distribution as the number of labels from this worker |L|
increases over time.

Method
We present two methods to address the problems raised in
the previous section. Firstly, we explore how to use limited
gold for learning a prediction model. Secondly, we introduce
a method for learning a prediction model in the absence of
gold labels by soft-label updating.

Initial Training vs. Periodic Updating
While offline batch learning does not consider the order of
training examples, an online learning algorithm is sensitive
to order since it processes training examples in a sequen-
tial fashion. For this reason, it matters when gold labels are
used to check a worker’s label correctness with limited gold.
In this study, we compare two different methods of using
limited gold labels for model training. The first method, ini-
tial training, uses all of the given number of gold labelsG at
the start to estimate model parameters. Initial training seems
appropriate if we assume a sequence of a worker’s label cor-
rectness follows the property of a stationary process. From a

temporal perspective, a sequence of worker’s label correct-
ness y can be described as a stationary process if statistical
parameters such as mean, variance, and autocorrelation of y
are all constant over time. However, initial training’s predic-
tion performance can be limited if a sequence of a worker’s
label correctness violates this stationary property.

To relieve this concern, we propose another method, re-
ferred to as periodic updating, which updates a learning
model periodically in order to remain in sync with any tem-
poral drift of a worker’s label correctness. Whereas initial
training uses all k gold labels at the start, periodic updat-
ing saves limited gold for later checks. In practice, since a
learning model requires some amount of training labels in
the initial learning phase, periodic updating also uses some
number of gold labels at the start. However, remaining gold
labels are reserved for periodic checking. This method is
hypothesized to perform better initial training when worker
correctness is not stationary over time.

Figure 1 presents a conceptual example contrasting ini-
tial training with periodic updating. While the former uses
4 gold labels initially, the latter uses two gold labels for pe-
riodic updating. As the number of crowd labels increase, the
two models are expected to show different performance.

Instance Weighting with Soft Labels
While the two proposed methods in the previous section in-
vestigate how to effectively utilize limited gold labels for
building a prediction model, due to the absence of gold la-
bels, some labels cannot be checked for their correctness.
While it is possible to measure the quality of labels offline
via pseudo gold labels (generated by aggregating labels), it
is problematic in practice to rely on pseudo-gold labels while
data collection is ongoing because workers do not all label
the same example at the same time.

Instead, our idea is to estimate and utilize soft labels based
on a probability of the worker producing a correct label at
time t. For an example with unknown gold, we generate two
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Figure 2: An example of soft labels with lower bound-based approach. Geometric discounting is applied to reduce instance
weights with increasing time as a guard against temporal drift.

soft labels: a positive training example and a negative exam-
ple. We assign instance weights to these training examples:
a probability of getting a correct label from this worker at
time k, p(correct)k, and 1- p(correct)k.

In order to derive this probability, we first consider a
model score-based approach, which assigns p(correct)k
and 1- p(correct)k generated from the model at time t to
instance weights at time t+1. Once instance weights are as-
signed to a pair of two soft labels at time t+1, we update our
model and obtain new model scores at time t+1, which are
used for instance weights at time t+2.

While the first approach relies upon actual model scores,
we consider another way to derive instance weights, a lower
bound-based approach. In this approach, both the quality of
the worker’s label accuracy as well as the quantity of labels
are considered. Based on the most recent accuracy measured
over gold labels, we estimate the probability of a worker pro-
ducing a correct label. For instance, if the latest worker’s ac-
curacy is measured over gold at time t, we use this value for
instance weighting.

For lower bound estimation, we adopt the Clopper and
Pearson Interval (Clopper and Pearson 1934), the so-called
binomial exact confidence interval. While the upper bound
of it is widely used for exploration and exploitation in Multi-
armed Bandit approaches (Auer, Peter and Cesa-Bianchi,
Nicolò and Fischer, Paul 2002; Tran-Thanh et al. 2014), we
focus on the lower bound of accuracy estimation since our
primary goal is to estimate the weight of each training exam-
ple with minimal uncertainty. The lower bound of the Clop-
per and Pearson Interval is defined by B(α2 ;x, n − x + 1)
where x is the number of correct labels made by a workerwj
at time i, n is the total number of labels by a worker wj , and
B(a; b, c) is the ath quantile from a beta distribution (b,c).

In addition to lower bound estimation, we also consider
temporal geometric discounting of the training weight of
soft labels. Our intuition is that the confidence of a worker’s

labeling accuracy at time i diminishes over time given possi-
ble non-stationarity in labeling performance. Assuming Xt

has a gold label, then for k>0, discount γt+k= 1
k So for

k=1,2,3, ... , we have γt+k = 1, 1
2 , 1

3 , ... .
Figure 2 shows an example of training a prediction model

with soft labels using periodic updating. Whenever a gold
label comes, the weight of a training example is reset to 1.
However, when no gold is available, we do instance weight-
ing using soft-labels.

Uncertainty-aware Learning
Recent studies in machine learning have investigated how
to learn with noisy training examples (Bootkrajang and
Kabn 2012; Bootkrajang and Kaban 2013b). We adopt such
uncertainty-aware learning, which trains a prediction model
by including instance weights of each training example.

To select a learning model, we adopt a variant of the
Adaptive Boosting (Adaboost) model proposed by Bootkra-
jang and Kaban for several reasons (Freund and Schapire
1997). Firstly, since we need to differentiate the weight of
each training example, weighted Adaboost exactly fits this
need. Secondly, it is a well-known ensemble algorithm that
obtains better predictive performance by combining multi-
ple weak learners. Thirdly, a weak learner to be used for
this boosting model is logistic regression which is relatively
simple to implement and not prone to overfitting. In prac-
tice, one of the challenging issues to run learning algorithms
online is that it takes too much time to update parameters
and predict output values once a new label comes.

In the classical logistic regression model, the log likeli-
hood is defined as:

N∑
n=1

yn log p(y = 1|xn, w) + (1− yn) log p(y = 0|xn, w)

(1)



where w is the coefficient vector. If all of the class labels
(y) were presumed to be correct, we would have p(y =
1|xn, w) = σ(wTxn) = 1

1+e(−wT xn)
and if this value is

greater than 0.5, the predicted value of xn is class 1. How-
ever, when class label noise is present, this approach may not
hold true. Thus, uncertainty-aware learning introduces a la-
tent variable ȳ to consider uncertainty of having an incorrect
class label. We model p(ȳ = k|xn, w) as follows:

Skn
def
= p(ȳ = k|xn, w) =

1∑
j=0

p(ȳ = k|y = j)p(y = j|xn, w)

(2)
where k ∈ 0, 1. Hence, the log likelihood of uncertainty-
aware learning is defined as:

N∑
n=1

ȳn logS1
n + (1− ȳn) logS0

n. (3)

We omit the details of mathematical proof of this method
since it is provided in (Bootkrajang and Kaban 2013a).
In prediction, we consider a semi-supervised sequential
learning task where we are given N training instances
{(xi, yi), i = 1, ..., N}. Here, each xi ∈ RM is an M-
dimensional feature vector adopted from (Jung and Lease
2015), and yi ∈ 0, 1 is a class label indicating whether an
worker’s next label is correct (1) or wrong (0). Before fitting
a model to our features and target labels, we first normalize
feature values using min-max normalization.

Evaluation
Dataset. The NIST TREC 2011 Crowdsourcing Track
Task 2 dataset is used1. The dataset contains 89,624 graded
relevance judgments (2: highly relevant, 1: relevant, 0: non-
relevant) collected from 762 workers rating the relevance
of different Webpages to different search queries (Buckley,
Lease, and Smucker 2010). We conflate judgments into a bi-
nary scale (relevant / non-relevant). This dataset is processed
to extract the original temporal order of the worker’s rele-
vance judgments. 3,275 query-document pairs which have
expert judgments labeled by NIST assessors are included in
the final dataset. In addition, workers making < 20 judg-
ments are excluded; since the goal of our work is to predict
worker’s next label quality, we intentionally focus on pro-
lific workers expected to continue to work in the future, for
whom such predictions will be useful. 49 sequential label
sets are obtained, one per worker. The average number of
labels (i.e., sequence length) per worker is 134.

Metric. We evaluate the performance of our prediction
model with accuracy. Since we build a prediction model per
worker, we report mean prediction accuracy across 49 work-
ers. Our extracted dataset is well-balanced in terms of a ratio
between relevant vs. non-relevant judgments, and thus use of
accuracy is appropriate.

1https://sites.google.com/site/treccrowd/

Models. We investigate the prediction accuracy of the
proposed methods with a varying number of gold la-
bels. Eight different combinations are considered in
this experiment. First, basic periodic updating (PER)
and initial training (INIT) do not update with soft la-
bels. Next, both periodic updating with uncertainty-
aware learning (PER+UNC(MD)) and initial training
with uncertainty-aware learning (INIT+UNC(MD)) up-
date a learning model with soft labels whose instance
weights are based on model prediction scores. Finally,
periodic updating with uncertainty-aware learning based
on lower bound (PER+UNC(LB)), periodic updating with
uncertainty-aware learning based on lower bound and ge-
ometric discounting (PER+UNC(LB+GD)), initial train-
ing with uncertainty-aware learning based on lower bound
(INIT+UNC(LB)), and initial training with uncertainty-
aware learning based on lower bound and geometric dis-
counting (INIT+UNC(LB+GD)) use soft labels based on the
lower bound of worker accuracy with or without geometric
discounting. As a baseline method, we also report an oracle
which runs with all known gold labels. We learn a predictive
model for each unique label set. To provide minimal train-
ing, the first 10 training examples per worker are used for
all settings. We evaluate prediction performance by varying
the number of gold labels between 11 and 60. While ini-
tial training uses all k training examples at the start, peri-
odic updating uses the remaining k-10 labels for later model
updates. Since some worker’s number of labels are smaller
than 60, we report the number of workers per each number
of gold labels in Table 1.

For simplicity, periodic updating updates the model ev-
ery (n−10)

(k−10) th label with a gold training example (fixed, uni-
form period update schedule) based on an assumption that
the maximum number of labels per worker is n. In practice,
when n may not be unknown in advance, it require some
exploration for setting the period of model update.

As our base model, we adopt generalized assessor
model (GAM) (Jung and Lease 2015). While they use L1-
regularized logistic regression, we instead use a variant of
AdaBoost, as discussed in the previous section. To learn the
AdaBoost model, we use default parameter settings from
Scikit-learn (Pedregosa et al. 2011), though setting a learn-
ing rate 0.3 after varying parameter values between 0.1 and
1 over the initial training set of each worker.

RQ1: Initial training vs. Periodic updating
What is the best way to utilize limited gold labels for build-
ing a more accurate prediction model? We examine the pre-
diction accuracy differences between initial training (INIT)
and periodic updating (PRED). Furthermore, in order to see
in what conditions different methods perform better, we in-
vestigate the correlation between the extent worker perfor-
mance is stationary vs. the relative improvement in predic-
tion accuracy by periodic updating.

Table 1 shows mean accuracy of our prediction models
across 49 workers. The prediction accuracy is initially mea-
sured by each worker and then we compute the overall av-
erage score across 49 workers. To examine if the results are



Number of Gold Examples
Method 15 20 25 30 35 40 45 50 55 60
Number of Workers (sample size) 49 49 49 49 49 49 49 49 48 47
Model Update Period (labels) 25 12 8 6 5 4 3.5 3 2.7 2.5
0: Oracle 80.7
1: INIT 56.1 59.6 64.3 66.5 68.4 70.1 73.8 74.5 75.3 75.2
2: PER 58.6* 61.3* 64.4 66.8 68.5 70.5 74.1 74.7 75.7 75.9
3: INIT+UNC(MD) 57.0 60.7 64.2 67.3 68.6 70.2 73.8 74.4 75.4 76.3
4: INIT+UNC(LB) 60.5* 62.8* 65.7 68.3 69.6 71.5 74.3 76.7* 78.4* 79.1*
5: INIT+UNC(LB+GD) 61.3* 63.5* 67.3* 69.2* 70.7* 73.0* 75.6* 77.7* 79.6* 79.8*
6: PER+UNC(MD) 58.7* 61.4* 64.3 66.9 69.1 70.9 74.1 74.8 76.1 76.5
7: PER+UNC(LB) 61.1* 63.4* 66.4* 68.9* 71.2* 73.1 74.6 76.1 77.4 78.4*
8: PER+UNC(LB+GD) 61.8* 64.3* 67.5* 69.1* 71.7* 73.3* 75.1* 76.9* 78.4* 79.1*

Table 1: Mean prediction accuracy of different prediction models over 49 workers with a varying number of gold training
examples. Number of workers per each gold training examples indicates a worker sample size. Model Update Frequency
indicates the period of model update which is only applicable to PER. A two-tailed pairwise t-test is conducted to examine
whether one model significantly outperforms method 1 (INIT). (*) indicate that one model outperforms method 1 (INIT) with
statistical significance (p<0.05). Bolded numbers are the best performing methods for each column.

significantly different from each other, we conduct a two-
tailed paired t-test. The results show that periodic updating
outperforms initial training when the number of gold labels
are very limited (<25). As the number of gold labels in-
creases, the benefit of using periodic updating tends to wane.
Considering that the average number of labels per worker is
134, this finding is reasonable. Having 25 gold labels means
that initial training measures the first 25 labels correctness
of a worker and does not update model afterward while pe-
riodic updating continues the measurement of worker label
correctness cyclically with the available number of gold la-
bels. This difference tends to bring a difference of predic-
tion performance when the number of gold labels are signif-
icantly limited (<25).

Our idea in periodic updating is that this model would
benefit a prediction model for some workers whose distri-
bution of label correctness may not follow a stationary pro-
cess, which means that mean, variance, and autocorrelation
of a worker’s label correctness are not constant over time.
To investigate this, we compute the autocorrelation of each
worker’s label correctness by adopting φ proposed by Jung,
Park, and Lease (2014). Next, the variance of the autocorre-
lations for each worker is computed since it represents to the
extent of being non-stationary over time. Finally, we obtain
Figure 3 which shows a correlation between the variance of
autocorrelations vs. relative improvement of prediction ac-
curacy by periodic updating. Figure 3 shows that periodic
updating improves prediction accuracy of workers whose la-
bel correctness frequently changes over time (large variance
of autocorrelations). This result supports our hypothesis that
updating a prediction model periodically with gold examples
would improve prediction particularly for workers whose la-
bel correctness dynamically drifts over time.

In sum, our first experiment shows that periodic updating
improves prediction accuracy when the number of gold la-
bels is very limited (<25). Furthermore, periodic updating

is seen to be most valuable when a worker’s label quality
distribution is not stationary.

RQ2: Uncertainty-aware Learning
The previous experiments demonstrated that periodic updat-
ing works more accurately than initial training under limited
supervision. Next, how do we update our prediction model
when a gold label is not available? And to what extent does
this method benefit improving prediction accuracy? We ex-
amine the efficacy of uncertainty-aware learning with soft
labels and geometric discounting in this experiment.

Table 1 shows that uncertainty-aware learning with soft
labels and geometric discounting significantly improves pre-
diction accuracy across a varying number of gold labels.
While the effect of this method decreases as the number
of gold labels increases, Method 5 (INIT+UNC(LB+GD))
and Method 8 (PRED+UNC(LB+GD)) show substantial im-
provement of prediction accuracy in comparison to naive
initial training (Method 1) and periodic updating (Method
2). In regard to the method of producing soft labels, lower
bound-based methods outperform model score-based meth-
ods across initial training and periodic updating. This result
suggests that lower bound-based methods tend to provide
more accurate soft labels, which leads to greater improve-
ment of prediction accuracy.

Next, we investigate the cause of performance improve-
ment by uncertainty-aware learning with soft-labeling. Our
idea in soft labels and instance weighting is that a probability
of getting a correct label can be derived from model scores
or the lower bound of a worker’s accuracy. We expect that if
a worker shows low entropy of labeling accuracy (far from
accuracy of 0.5), then the benefit of soft labeling increases.
To examine this hypothesis, we conduct an additional ex-
periment which focuses on correlation between the predic-
tion accuracy improvement by uncertainty-aware learning
vs. workers’ label accuracy. To measure the improvement
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Figure 3: Prediction accuracy improvement by periodic up-
dating vs. variance of crowd label correctness’ autocorre-
lation (number of gold examples = 30). Prediction accu-
racy improvement by periodic updating is computed by
PER−INIT

INIT . Both methods work without uncertainty-aware
learning. An autocorrelation of label correctness indicates
temporal dependency between label correctness, and thus
its variance means to the extent temporal dependencies in
a sequence of label correctness drifts dynamically over time
(non-stationary).

of prediction accuracy, we compare Method 2, vanilla peri-
odic updating (PER), with Method 8 (PER+UNC(LB+GD)),
periodic updating with uncertainty-aware learning based on
lower bound and geometric discount. Figure 4 shows that
uncertainty-aware learning achieves better prediction accu-
racy across 64% (29 out of 45) workers. Note that a pre-
diction model for a worker with accuracy > 0.6 or < 0.4
achieves higher improvement of prediction accuracy. For a
worker whose accuracy ranges around 0.5 (higher entropy
of labeling accuracy), uncertainty-aware learning based on
lower bound and geometric discount tends to show slightly
weaker performance improvement.

Finally, we conducted an experiment to investigate how
the geometric discount influences prediction accuracy. We
hypothesize that if the distribution of a worker’s label cor-
rectness is non-stationary, the benefit of geometric discount
increases. We measure the relative improvement from the
geometric discount by comparing Method 7 and Method
8. To measure the degree of being stationary, we mea-
sure the variance of a worker’s label correctness. Figure 5
shows when geometric discount brings more benefit in terms
of prediction accuracy. This result supports our hypothesis
since geometric discount shows bigger improvement for a
worker of showing a non-stationary property.

In sum, Experiment 2 demonstrates that uncertainty-
aware learning shows substantial improvement of prediction
accuracy with soft labels. Furthermore, our additional exper-
iments confirm why and when uncertainty-aware learning
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Figure 4: Prediction accuracy improvement by uncertainty-
aware learning vs. crowd worker label accuracy (number of
gold labels = 30). Prediction accuracy improvement by pe-
riodic updating is computed by Method8−Method2

Method2 . This fig-
ure shows that Uncertainty-aware (UNC) learning improves
overall prediction accuracy overall. In particular, when label
accuracy is reliable (> 0.6 or < 0.4), it is superior to uncer-
tainty free learning.

with soft labels brings such performance improvement.

RQ3: Additional gold vs. uncertainty-aware
learning
Our final experiment seeks an answer to the following ques-
tion: which method is more efficient to maximize our pre-
diction accuracy: adding one more gold label or applying
uncertainty-aware learning? We measure the relative im-
provement of prediction accuracy at the number of gold la-
bels t and the number of gold labels t + 1 between from
10 gold labels and 50 gold labels. At the same time, the
benefit of uncertainty-aware learning with soft labels is
computed by measuring the difference between method 8
(PER+UNC(LB+GD)) and method 2 (PER) at the number
of gold labels t. Figure 6 shows that while adding one
more gold label brings almost 0.5-1% accuracy improve-
ment, uncertainty-aware learning with soft labels improves
prediction accuracy up to 5.5%.

Conclusion and Future Work
Limited supervision raises a question of how to learn a
model for predicting crowd work quality. For this problem,
we explore two methods of using limited gold labels and
present a novel way to learn a prediction model with soft
labels based on instance weighting. Our experiments with a
real crowdsourcing dataset demonstrates that model perfor-
mance is significantly improved by our proposed methods.

A limitation of this work is its reliance on expert gold
for supervision, rather than using peer-agreement between
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Figure 5: Prediction accuracy improvement by geometric
discount vs. variance of label correctness (number of gold
labels = 30). Prediction accuracy improvement by geomet-
ric discounting is computed by Method8−Method7

Method7 .

workers to evaluate individual correctness. As discussed ear-
lier, such a strategy is difficult to employ in a live setting
because it is unrealistic to assume that all workers label the
same example at the same time, or that a worker would hap-
pily wait for all others to do so before anyone can proceed
to the next task (Jung 2014). To address this challenge, fu-
ture work will investigate a “lazy update” strategy (Laws,
Scheible, and Sch 2011). Instead of updating each worker’s
model immediately upon label submission, we instead up-
date it later, after all other peer-labels have been received for
that example and the consensus label has been established.

As an extension of this study, we aim to predict the aver-
age accuracy of the worker in labeling the next k (e.g. 10)
tasks. Furthermore, we plan to group a set of workers who
show similar labeling performance in order to solve data
sparsity (Venanzi et al. 2014).

Finally, there are interesting opportunities to investigate
at the intersection of live task-routing with active-learning
techniques, specifically in the crowdsourcing context in
which we must select both examples to label and workers to
do the labeling who offer different cost vs. reliability trade-
offs (Nguyen, Wallace, and Lease 2015).
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