School of Information, The University of Texas at Austin
INF 393C.10 Treatment techniques for flat paper

Course meeting times: Tuesday, 9:00 - 11:45, UTA 1.506B (Paper Lab)

Course Description
Basic procedures and techniques for the care and handling of materials found in library and archival collections; setting realistic goals and priorities for collection care; basic concepts of preventive conservation; understanding the nature of materials; practical experimentation. There are no prerequisites. Lab work outside normally scheduled class hours is required.

Lecturer: Karen L. Pavelka
Email: pavelka@utexas.edu
Lab: UTA 1.506B phone: 512-471-8269 (Much more likely to be here.)
Office: UTA 5.422 phone: 512-471-8286 (Rarely in office.)
Lab hours: Posted on lab door and may change over the course of the semester.

Objectives:
Techniques that can do a substantial amount of good for a collection, but can be performed with minimal equipment, space, materials and skill will be covered. Additionally, students will learn how to teach techniques to others and how to evaluate and improve technicians’ performance. Students will learn to:
- Perform basic conservation treatments including dry cleaning; humidification and flattening; and mending
- Select appropriate housings
- Design and build enclosures
- Assess the condition of materials and select appropriate repair techniques
- Allocate collection care resources
- Follow basic laboratory protocol
- Design and evaluate simple experiments

Tools and materials
Students will be provided with a tool kit for use during the semester. The complete tool kit must be returned in good condition at the end of the semester. Treatments will be performed on a variety of collection and non-collection materials, most of which will be provided by the instructor, but students are welcome to bring in materials from their personal collections to augment class assignments. Students may be responsible to supply some materials, such as small books for enclosures.

Lab use
Students will have key card access to 1.506 (Ante room) at all times UTA is open. Please use this room respectfully. Reading materials are not to be taken from the room without the explicit permission of the instructor. (That's me, Karen, and no one else.) However, please do use the room. It is a nice, quiet place to read, study or hold small meetings. Please log in whenever you are using the room.

Students are welcome to use the paper lab 1.506B during lab hours and office hours. These hours will be posted on the doors to the ante room by the end of the first week of class. The lab has equipment, microscopes and tools. Students may use any of these but only with the explicit permission of and training from the instructor. (Again, that's me, Karen, and no one else.) Labs can pose physical and chemical dangers and all rules must be respected.
Lab rules

- No food or drink is allowed in the lab. Ever. This is for your own personal safety.
- Backpacks, jackets, etc. are to be stored in the cubbies in the front of the lab or the cubbies in the ante room.
- Do not put your hands in your mouth when working in a lab. Ever.
- Do not touch your face, especially eyes.
- Close toed shoes must be worn at all times in the labs.
- No high heels.
- Shorts are discouraged. If a student is wearing shorts they will be required to wear a lab coat.
- The instructor reserves the right to refuse anyone access to the lab who is not properly attired. If this causes the student to miss a class it will count against their grade.
- Lab coats are available if needed.
- Small children are not allowed in labs. Older, well-behaved, supervised children are allowed in for tours and such.
- Personal protective equipment must be worn as appropriate.
- Eye protection must be worn when working with power tools. Failure to adhere to this rule will result in an F for the course and the student being barred from the labs.
- Loose clothing and long hair must be tied back when working with power tools or blades.
- Do not use any equipment unless you have been properly trained and have been given permission.
- The first aid kit is to the right of the utility sink in the paper lab.
- Eyewash stations are mounted on the utility sinks in the paper and book labs.
- Chemical showers are located near the utility sinks in both labs.
- Do not open any cabinet or drawer unless you have been given permission.
- Do not borrow tools without permission.
- Keep all surfaces clean and free of extraneous materials.
- All tools must be cleaned and all materials put away before leaving the lab area.
- The lab should be cleaner when you leave it than it was when you arrived. It makes no difference that you did not make the mess, you are still responsible for keeping the labs clean.

Assignment due dates

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH201 EHS Course</td>
<td>Immediate</td>
</tr>
<tr>
<td>Teflon and micro-spatula</td>
<td>February 2</td>
</tr>
<tr>
<td>Conservation treatment investigation</td>
<td>February 2</td>
</tr>
<tr>
<td>Simple enclosure construction</td>
<td>February 2</td>
</tr>
<tr>
<td>Enclosure copy</td>
<td>February 9</td>
</tr>
<tr>
<td>Varied enclosure designs</td>
<td>February 23</td>
</tr>
<tr>
<td>Experiment design</td>
<td>February 16</td>
</tr>
<tr>
<td>Experiment implementation</td>
<td>April 26</td>
</tr>
<tr>
<td>Treatment report</td>
<td>March 7</td>
</tr>
<tr>
<td>Quality of treatment</td>
<td>Various</td>
</tr>
<tr>
<td>Summary of treatment skills</td>
<td>May 5</td>
</tr>
<tr>
<td>Attendance and participation</td>
<td>On-going</td>
</tr>
<tr>
<td>Lab, tool and equipment maintenance</td>
<td>On-going</td>
</tr>
</tbody>
</table>

Grading

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH201 EHS Course</td>
<td>0 points; required for working in lab</td>
</tr>
<tr>
<td>Teflon and micro-spatula</td>
<td>10 points</td>
</tr>
<tr>
<td>Conservation treatment investigation</td>
<td>10 points</td>
</tr>
<tr>
<td>Simple enclosure construction</td>
<td>5 points</td>
</tr>
<tr>
<td>Enclosure copy</td>
<td>5 points</td>
</tr>
</tbody>
</table>
Varied enclosure designs 20 points
Experiment design and implementation 10 points
Treatment report 10 points
Quality of treatment 10 points
Summary of treatment skills 5 points
Attendance and participation 10 points
Lab, tool and equipment maintenance 5 points

Course Policies
Students with disabilities may request appropriate academic accommodations from the Division of Diversity and Community Engagement, Services for Students with Disabilities, 471-6259. http://www.utexas.edu/diversity/ddce/ssd/

Students are expected to adhere to the University Honor Code. http://www.utexas.edu/about-ut/mission-core-purpose-honor-code

By UT Austin policy, you must notify me of your pending absence at least fourteen days prior to the date of observance of a religious holy day. If you must miss a class, an examination, a work assignment, or a project in order to observe a religious holy day, you will be given an opportunity to complete the missed work within a reasonable time after the absence.

Students are expected to attend all classes and arrive on time. I may request a doctor's excuse if a student is ill. Assignments must be submitted by midnight on the day they are due unless an extension has been approved by the instructor before the due date. Grades will be reduced by 10% for each day the assignment is late.

Course schedule

January 19 Week 1
Introduction; Lab safety; Tool making

Readings:

Assignments:
Complete OH201, Course from Environmental Health and Safety Office. This is not a graded assignment but students will not be allowed access to the labs after the first class meeting until this is completed.
Due: Before lab hours or next class meeting.

Shape and polish Teflon tool and micro spatula
Due: February 2

Investigate treatment options
Due: February 2

January 26 Week 2
Selecting materials
Basic enclosure structure
Unframing demonstration

Readings:
STASH (Storage Techniques for Art, Science & History Collections). Foundation of the American Institute for Conservation. Retrieved December 14, 2015, http://stashc.com/ Browse the site and pay particular attention to the Solutions page. We will be discussing materials and structures in class and you will be expected to be familiar with basic concepts.

Assignments:
Complete simple enclosure
Due: February 2

February 2 Week 3
Storage and housings: Designs and materials

Readings:

Assignment:
Copy an existing enclosure. Models will be given.
Due: February 9

February 9 Week 4
Evaluating risks; Protecting objects

Readings:
TBD Probably Waller and agents. Maybe more C2C

Assignment:
Enclosure variants
Due: February 23

Experimental design and implementation
Design due: February 16
Results report due: April 26

February 16 Week 5
Conservation treatment: Examination and documentation

Readings:

Assignment:
Treatment report and photodocumentation for architectural drawings.
NB: These drawings are collection materials. No carelessness will be tolerated. The materials are to be properly stored and handled at all times.
Due: March 7

February 23 Week 6
Conservation treatment: Dry cleaning

Readings:

March 1 Week 7
Conservation treatment: Humidification and flattening
Experiments

Readings:

Paperonline. (2014). January 9, 2015, from http://www.paperonline.org/ Read at least the sections on History and Papermaking. The information is from a papermaking company, so take it with a grain of salt.

Assignment:
Remove flattened materials from felts and boards and assess. This will be discussed in class on March 8 and all students are expected to be familiar with the outcomes.

March 8 **Week 8**
Conservation treatment: Humidify and flatten architectural drawings

Readings:

Assignment:
Flatten drawings from Alexander Architectural Archive.
Due: March 22

March 15 **Spring Break**
Lab hours to be arranged

March 22 **Week 9**
Conservation treatment: Mending

Readings:

Assignment:
Mend drawings from Alexander Architectural Archive. You must have your treatment skills approved by the instructor before you may proceed with these mends.
Due: April 5

March 29 **Week 10**
Planning space; Handling objects

Readings:

ADD: C2C, NEDCC, etc.

April 5 **Week 11**
Conservation care: Photographs
Readings:

April 12 Week 12
Open labs

April 19 Week 13
Open labs

April 26 Week 14
Open labs

Assignment: Write a short summary of your treatment skills and limitations. - Due May 5

May 3 Week 15
Open labs/Review
Return tools; clean labs
Assignments

OH201 EHS Course Due immediately
Complete OH201

Teflon and micro-spatula Due February 2
Modify Teflon rod and micro-spatula as shown in class.

Conservation treatment investigation Due February 2
Investigating treatment options

You have been given an object in poor condition that would benefit greatly by conservation treatment. For this assignment you will:

• Identify and describe the damage you would like repaired
• Research what extent of the treatment you might be able to accomplish your self and write a brief summary of how you would accomplish that
• Identify how you would find a professional to repair the document
• What questions would you pose to the professional and what type of response would you find satisfactory and unsatisfactory?

Simple enclosure construction Due February 2
Construct enclosure as demonstrated in class.

Enclosure copy February 9
Copy enclosure as demonstrated in class

Varied enclosure designs February 23
Enclosure exercise

There is a collection object that needs to be housed. The object is rectangular with the following dimensions:

20 cm. width
30 cm. length
5 cm. height

The object is:

• Extremely fragile
• Easily damaged with minimal physical force
• Extremely light sensitive, corresponding the Blue Wool standard #1
• Very attractive to and easily damaged by various types of insects and rodents
• Very quickly damaged by fluctuations in RH
• Valuable, but not the most valuable object in the collection; not replaceable
• Sought after by collectors

Design five enclosures, one for each of the following conditions:

• Closed stacks in a well staffed, rare book library
• Closed stacks, on a shelf where it is exposed to a window facing the southwest
• Closed stacks, on the lowest shelf in a sub-basement
• Open stacks, good quality shelving; T 68°F +/- 2, RH 50% +/- 20
The object will be shipped to another venue in a van with no special shock absorbers and no climate control.

For each of the five enclosures you will produce:
- A drawing, specifying dimensions and materials
- A list of tools and specialized equipment needed to build the enclosure
- An explanation of why you chose the design and materials, and what problems they will guard against
- An estimate for the cost of materials, calculated as a percentage of a realistic order
- An estimate for the time required to build the enclosure

Your enclosure designs should be as cost efficient as possible. They should protect against the threats in each situation, but respect the fact that cultural institutions never have adequate budget, staff or space. Moving the object to a space other than the one described in this exercise is not an option.

If it makes you happy you may describe and draw the object, but it is not required. The object can be as unrealistic and magical as you like, but it is not self-repairing. It is the same object in each of the five enclosures.

Experiment design
February 16
Design experiment as explained in class.

Experiment implementation
April 26
Design experiment as explained in class.

Treatment report
March 7
Sample reports will be given in class.

Summary of treatment skills
May 5
Write a brief summary of what extent of treatment you feel capable to perform on collection material, and when you would need to contact a conservator.