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ABSTRACT
While test collections provide the cornerstone of system-based
evaluation in information retrieval, human relevance judging has
become prohibitively expensive as collections have grown ever
larger. Consequently, intelligently deciding which documents to
judge has become increasingly important. We propose a two-phase
approach to intelligent judging across topics which does not re-
quire document rankings from a shared task. In the first phase, we
dynamically select the next topic to judge via a multi-armed bandit
method. In the second phase, we employ active learning to select
which document to judge next for that topic. Experiments on three
TREC collections (varying scarcity of relevant documents) achieve
τ ≈ 0.90 correlation for P@10 ranking and find 90% of the relevant
documents at 48% of the original budget. To support reproducibility
and follow-on work, we have shared our code online1.
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1 INTRODUCTION
Cranfield-based evaluation of information retrieval (IR) systems [4,
23] relies on the construction of a test collection: a document col-
lection, a set of search topics, and human judgments of document
relevance for those search topics. However, large-scale IR evalu-
ation is becoming increasingly challenging and economically in-
feasible because there are too many documents in the collection
to be judgedConsequently, there is a growing need for improved
methods to create test collections at minimal cost.

Developing a reliable, low-cost IR test collection requires intelli-
gent budget allocation across search topics and careful selection of
documents for human annotation. However, existing approaches
[28, 32] either allocate the same budget across all topics or estimate

1 https://github.com/mdmustafizurrahman/MAB_AL_TestCollection/
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a budget per topic rather than allocating the total budget dynami-
cally across topics based on their judgment needs. For example, in
TREC, each topic is traditionally allotted a budget that equals the
size of its top-k pool, constructed by pooling the highest ranked k
documents from the submitted runs for that topic.

However, developing a test collection by running a shared task
has several drawbacks. First of all, running a shared task is difficult,
slow, and expensive. In some cases, it may be nearly impossible
to garner enough participants, such as for less studied languages
(e.g., Turkish) or search tasks (e.g., historical search). In addition,
Li and Kanoulas [17] recently noted that some document selection
approaches based on participant rankings [9, 18] may overly bias
selection toward the best-performing runs. Furthermore, Voorhees
[28] reports empirical evidence that some dynamic document se-
lection methods [18] can also produce less reusable test collections.

Consequently, if our goal is simply to build a new test collection
at minimal cost, it would be preferable to be able to do this without
having to run a shared task [26]. However, this poses its own set of
challenges. In the absence of document rankings from shared task
participants, wemust find anothermeans to select which documents
should be judged for relevance to search topics. In addition, while
the size of the top-k pools for different topics are known to vary
widely, since we have no document rankings with which to apply
pooling, we must find another means of allocating the judging
budget across search topics.

We propose a two-phase approach to constructing test collec-
tions without needing to organize a shared task. Because it is known
that evaluation becomes more reliable as more relevant documents
are found [24], our main goal is to find as many relevant documents
as possible for a given budget. In the first phase (topic selection),
we want to select whichever topic is most likely to supply relevant
documents. In the second phase (document selection), we want to
select one or more documents for the given topic that are the most
likely to be relevant.We implement the first phase via amulti-armed
bandit (MAB) [21] method. We are not familiar with any prior work
exploring MAB for intelligent topic selection. During the second
phase, we investigate several alternative active learning [25] (AL)
strategies to select which documents to judge for each search topic.
Finally, we use the collected relevance judgments to update both
the active learning classifier for document selection and the bandit
statistics for topic selection, thereby iteratively improving topic
and document selection in successive rounds.

Across three TREC collections with varying scarcity of relevant
documents, our best method achieves τ ≈ 0.90 Kendall correlation
on average with the original system ranking for P@10, using less
than 50% of the budget allotted in the original pool. Results for
MAP-based evaluation are weaker but still encouraging, suggesting
the approach is promising but future work is still needed.
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2 RELATEDWORK
A considerable amount of research [1, 2, 8, 9, 17–20, 30, 31] has
been conducted to select documents for human annotation. These
approaches can be mainly categorized into two groups: i) static
[1, 2, 19, 30, 31] and ii) dynamic [8, 9, 17, 18, 20] selection. In a
static selection process, the relevance judgment process is initiated
only after the document selection process is completed. In contrast,
in a dynamic selection process, document selection and relevance
judgment process occur in a feedback loop, where the relevance
judgments that are collected so far affect the selection process of the
subsequent documents. Our proposed approach is closely related
to the dynamic selection approaches. However, our approach does
not require organizing a shared-task while prior work relies on the
runs submitted by participants of a shared-task.

2.1 Document Selection Strategies
Various dynamic document selection methods have been proposed
to intelligently select which of the documents retrieved in a shared
task should be judged. The Move-to-front (MTF) pooling [9] is one
of the pioneer examples of the dynamic document selection process.
For a given topic, MTF maintains a priority list of submitted runs.
At any round, MTF selects the top-ranked unjudged document from
the current highest priority run for annotation. Then based on the
relevance judgment of the selected document, MTF updates the
priority of the selected run and moves to the next round.

Carterette et al. [3] propose to construct minimal test collections
to judge ranking systems with confidence. They select documents
to be judged iteratively such that the document that might differen-
tiate systems’ performances the most is selected at each iteration.
However, their method completely depends on submissions from
multiple systems, while the main goal of our work is eliminating
the massive cost of running shared-tasks.

Rajput et al. [20] develop a framework to construct test collec-
tions using an iterative reinforcement method between nuggets
and documents. Their iterative process starts with a few manually
created nuggets which are utilized to select documents for the rele-
vance judgment. The relevant documents found in the relevance
judgment are used to update the weights of the existing nuggets
and extract new nuggets automatically which are then used in
the subsequent iteration of document selection. However, should
automatic nugget extraction fails (e.g. Web Track 2009), their docu-
ment selection process solely depends on the submitted runs of the
shared task, whereas we consider a no shared task context.

Losada et al. [18] develop a document selection process by uti-
lizing several multi-armed bandits [21] approaches. Their best per-
forming approach, the MaxMean (MM) approach, assigns a weight
to a run proportional to the ratio of the number of relevant doc-
uments found, and the total number of documents judged so far
for that run; then it selects the run with the highest weight. Losada
et al. empirically prove their superiority over MTF in terms of the
number of relevant documents found.

However, Li and Kanoulas [17] point out that dynamic document
selection based on a shared task context creates a bias towards the
good runs (e.g., runs with more relevant documents). Their pro-
posed approach also utilizes a shared task by inducing a probability

distribution from the participating systems, and a probability dis-
tribution over the ranks of the documents; then it actively samples
documents from the joint distribution to construct a test collection.

Recently, Voorhees [28] further supports Li and Kanoulas’s state-
ment by developing the TREC 2017 Common Core track collection
via utilizing MaxMean(MM) proposed by Losada et al. [18]. The
author finds out that only a single run contributes the large per-
centage of relevant documents in the collection [28]. In contrast,
our test collection construction approach in the absence of a shared
task is free from this bias towards good runs.

The use of AL in our document selection phase closely follows
work by Cormack and Grossman [7] (and we adopt their nomencla-
ture). However, their study is situated in a rather different domain,
“e-discovery”, focusing on set-based retrieval rather than ranked
retrieval. Moreover, the judging cost is measured differently in this
domain: no document can be selected automatically since all of the
documents must be reviewed for privilege following discovery.

2.2 Topic Selection Strategies
Previous studies [11, 12, 14, 24, 28, 32] treat topic selection as a bud-
get allocation problem. These studies either allocate an immutable
budget for a topic at the outset of the relevance judgment using
various information e.g., the number of relevant documents at the
top-k pool [28, 32], or recommend to utilize many topics with a
fewer number of relevance judgments [24].

Zobel [32] proposes to collect more judgments for topics with a
higher estimated number of relevant documents. The estimation
is computed using the relevance judgment collected for each topic
in its top-k pool, and according to Zobel, it follows the power law
distribution with the rank of the document. Voorhees follows the
same top-k pool with a different formulation ([28], Page 411) to
estimate the budget for a topic. However, none of the approaches
treat the budget allocation as a topic selection problem as we have
done here, where the selection of a subsequent topic for relevance
judgment depends on the relevance judgments collected so far.
Besides, both of the approaches [28, 32] utilize a shared task which
is absent in our task setting.

Prior work [11, 12, 14] also investigates the possibility of select-
ing a subset of topics. Guiver et al. [11] experimentally show that
if we can find a "right" subset of topics, we can achieve a ranking
of systems that is very similar to the ranking when all of the topics
are used for evaluation. Even though they do not propose a method
for finding the "right" subset of topics, their work motivated many
researchers to work on the topic selection problem [12, 14]. Stud-
ies on topic selection treat each selected topic equally (i.e. collect
the same amount of judgments per each), while no judgments are
selected for the topics that are not selected. On the contrary, we
collect a varying number of judgments per topic.

3 PROPOSED APPROACH
Our approach consists of two phases which alternate between topic
selection and document selection. In topic selection phase, we es-
timate the prevalence of relevant documents for each topic, and
select the topic with the highest estimated prevalence. In document
selection phase, we use a classifier to predict the relevance of all un-
judged documents for the selected topic, and use those predictions



to select which documents to judge next for that topic. We then
use the collected relevance judgments to update both the given
classifier and the topic statistics. This iterative process of topic and
document selection continues until the budget is exhausted.

Algorithm 1 describes our two-phase approach in detail.

Algorithm 1: Two-phase Topic and Document Selection
Input :Unjudged documentsU • batch size N • Budget b

• Document selection policy p
Output :Relevance judgments R1:J for topics 1 : J

1 R1:J ← ∅
2 for topic j ← 1 to J do
3 Select seed document set S j ∈ U for topic j
4 R j ← judge_relevance ( j, S j ) ▷ Collect judgments
5 U ← U − S j ▷ Update set of unjudged documents
6 b ← b − |S j | ▷ Update remaining budget
7 C j ← train_classifier ( S j , R j )
8 α j ← 1, βj ← 1 ▷ Initialize Beta distribution for bandit
9

10 while remaining budget b >= batch size N do
11 for topic j ← 1 to J do
12 Pj ← sample probability from Beta (α j , βj )
13 Selected topic j ← argmax

j
Pj

14 R̂ j ← predict_relevance (C j ,U ) ▷ for all unjudged
15 S j = select_documents ( U, R̂ j , batch size N , policy p )
16 R j ← judge_relevance ( j, S j ) ▷ Collect judgments
17 U ← U − S j ▷ Update set of unjudged documents
18 b ← b − N ▷ Update remaining budget
19 C j ← update_classifier (C j , S j , R j )
20

21 for document i ← to N do ▷ Update bandits
22 if R j (i ) is relevant then
23 α j ← α j + 1
24 else
25 βj ← βj + 1

3.1 Phase 1: Topic Selection
Each topic may need different number of judgments based on the
number of relevant documents found in the collection. Thus, allo-
cating a static pre-defined budget for all topics may incur more/less
cost than required for topics. Therefore, we prefer to allocate the
budget across topics dynamically based on the needs of each topic.
Given the fact that we do not have any prior knowledge about the
number of judgments needed for a topic, an exploration-exploitation
situation arises naturally, which can be approached using the multi-
armed bandits (MAB) techniques [21].

In the standard MAB problem, we have to repeatedly make a
choice among J bandits (or slot machines), each of which has a
hidden probability of winning and losing. Depending on the slot
machine j we select at round t , we receive a reward (e.g. 1 for win-
ning, or 0 for losing). In the long run, we want to maximize our
final reward. This multi-armed bandits problem is a natural fit for

our topic selection problem. Each topic j can be referred to as a slot
machine and each of these topics has a hidden probability of sup-
plying a relevant document. At each round t , based on the selected
topic j, we either receive a relevant or non-relevant document. At
any round t , we can estimate which topic is more likely to provide
more relevant documents. The exploration-exploitation dilemma
arises when deciding between whether we should keep selecting
that topic or we should explore other topics; we do not know which
decision will help us maximize the number of relevant documents.

To allocate the budget across topics dynamically, we apply a
Bayesian approach [10] where each topic’s hidden probability dis-
tribution over relevant and non-relevant documents is endowed
with a prior distribution. With no prior knowledge about the topic’s
prevalence, we start with a uniform prior for each topic. Note that
a uniform distribution is a special case of a Beta(α , β ) distribution,
when α = 1 and β = 1. In our Algorithm 1, α and β denote the
number of relevant and non-relevant documents found so far for a
topic j, respectively. At any round t , we start by selecting a topic j
from the Beta(α , β ) distribution. Next we select N documents to
judge using a document selection process (Section 3.2) for topic j.
Finally, the binary outcome, O, (either relevant or non-relevant) for
each selected document is used to update the hidden probability dis-
tribution of topic j. With a Beta(α , β ) prior and a binary outcome,
the posterior O is also a Beta(α +O, β + 1 −O ) distribution.

3.2 Phase 2: Document Selection
In this phase, we select N documents to judge for a given topic
j. However, in the absence of a shared-task, we do not have any
ranking information of documents. Therefore, if we select docu-
ments randomly, it is very unlikely to find any relevant document.
Thus, we employ active learning [25], a learning paradigm where
a classifier decides which document should be annotated next in
order to maximize the learning curve of the classifier.

3.2.1 Task Definition and Learning Model. To train a topic-specific
active classifier, we must collect the topic-specific training data. Let
us assume that a training pair for a topic j is denoted by

〈
x i ,yij

〉
,

where x i denotes the feature representation of document, i and yij
denote the binary relevance judgment for <document i , topic j>.
We adopt logistic regression as a classifier to infer the probability
of relevance P (yij |x

i ) of each document x i for topic j:

p (yij |x
i ) = hθ (xi ) =

1
1 + exp(−θ⃗T xi )

(1)

with θ⃗ ∈ RD denotes model parameters.

3.2.2 Document Selection Criteria. Utilizing the posteriori proba-
bility of documents for a given topic j, we can select documents to
be judged in two different ways: Simple Active Learning (SAL) and
Continuous Active Learning (CAL).

SAL [15] selects a document for relevance judgment when the
classifier is most uncertain about the label of that document. We
employ an entropy-based uncertainty function [25] for this:

Uncertainty (x ) = −
∑
y∈Y

P (y |x ) log P (y |x ) (2)



Table 1: Test collection statistics. As collections have grown
larger, judging budgets have also shrunk, leading to in-
creased prevalence of relevant documents in later tracks.

Track Collection Topics #Docs #Judged %Rel
WT’14[6] ClueWeb124 251-300 52M 14,432 39.2%
WT’13[5] ClueWeb12 201-250 52M 14,474 28.7%
TREC-8[29] Disks45-CR5 401-450 528K 86,830 5.4%

where y is either relevant or non-relevant. With binary relevance,
SAL selects:

x⋆ = argmin
i
|p (relevant |x i ) − 0.5| (3)

In contrast, CAL selects a document based on how likely the doc-
ument is to be relevant according to the prediction of the classifier.

x⋆ = argmax
i

p (relevant |x i ) (4)

3.2.3 Seed Document Selection. In order to learn an initial classi-
fier for each topic, a minimal seed set of relevance judgments for
each topic is required. We assume a single off-the-shelf or in-house
IR system (e.g., Apache Lucene2 or Indri3) is used to produce a
document ranking for each topic. The assessor is then asked to
proceed down the document ranking for each topic until at leastm
number of relevant andm number of non-relevant documents have
been found, or some maximum effort is reached without success, in
which case, the topic is discarded. In this paper, we assumem = 5.
Note that this single IR system is used only once at the outset to
guide seed set annotation, and one might even do without this if
one is willing to resort to boolean search or random selection to
identify the seed documents [7].

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. We conduct our experimental evaluation on three TREC
test collections (See Table 1). We assume binary relevance and
collapse NIST graded relevance judgments to binary.

We use only pooled documents of each collection because un-
pooled documents are not judged and typically assumed to be not-
relevant. However, relevant documents may exist outside the pool,
and assuming them to be non-relevant could hurt classifier training
and prediction. One could judge the unpooled documents selected
by our method, though this could yield inconsistency between the
original judgments and new judgments. This issue could be usefully
revisited in future work. In the remainder of this paper, we refer to
the set of pooled judged documents as the “qrels.”

Document Selection. In the document selection phase, we have
to represent the documents in a feature vector for the classifier of
the active learning approach. We first pre-process the documents
using IndriBuildIndex6. The pre-processing consists of text nor-
malization, stopword [16] removal, and Krovetz stemming [13].
Finally, each pre-processed document is represented using a 15K
dimensional TF-IDF [22] vector. Each iteration of AL selects one
document to be judged next. In order to select the seed documents
2 https://lucene.apache.org/ 3 https://www.lemurproject.org/indri.php
6 www.lemurproject.org/indri.php

of AL, we randomly select one of the runs for each test collection
and assume it as our off-the-shelf IR system.
Baselines.We have one baseline method for document selection
and another baseline method for topic selection.
• Simple Passive Learning (SPL): This baseline method for
document selection uses uniform random selection.
• Round-Robin (RR): RR simply cycles through topics and
then repeats, thus allocating the same budget for each topic.
No information is used regarding topic prevalence ratio or
collected relevance judgments.

Upperbound. We develop Oracle as the upperbound for our
topic selection method. Whereas MAB must learn the prevalence
ratio of topics during dynamic topic selection, the Oracle knows the
exact prevalence ratio of each topic at each round t . To do this, we
initialize the α and β parameters of each topic with the topic’s total
number of relevant and non-relevant documents in the original
qrels. At each round t , we update the parameters, decreasing α and
β based on the relevance judgments collected during that round.

Table 2: Avg. number of relevant documents found un-
der varying budget per topic on TREC-8. For MoveToFront
(MTF), MaxMean Non-Stationary (MM-NS), and MAB+CAL
topic selection, MAB+CAL consistently performs best.

Average number of judgments per topic
Method 100 300 500 700 900 1100 all
MTF 34.06 58.48 71.78 79.22 84.5 87.58 94.04
MM-NS 36.96 64.62 77.3 82.5 86.34 89.2 94.04
MAB+CAL 46.3 78.4 86.5 90.3 91.3 93.5 94.04

4.2 Results and Discussion
Effectiveness of topic selection. How well can MAB identify
relevant documents? Figure 1 compares the recall of MAB with
Oracle and RR for WT2014 and WT2013 collections. The overall
Area Under Curve (AUC) effectiveness across all budget points is
reported in Figure 1. The x-axis of each plot represents the total
allotted budget. Ultimately, each strategy achieves complete recall
because all pooled documents are judged. As expected, RR is the
weakest performing topic selection method across all six plots of
Figure 1, suggesting that we should select topics intelligently to
maximize recall of relevant documents. Also as expected, Oracle
performs best in every case, and the recall curve of MAB consis-
tently lies between Oracle and RR.

Dynamic vs. random document selection. Figure 1 also re-
ports the performance of the three document selection strategies.
We observe that CAL outperforms the SPL baseline in both test
collections and in all topic selection strategies. However, we cannot
infer the same conclusion about SAL because SAL outperforms
SPL only in 3/6 of cases based on AUC scores. CAL selects the
documents that are most likely to be relevant, yielding a higher
recall than others. On the other hand, SAL selects documents whose
relevance is uncertain, and thus tends to select more non-relevant
documents, ultimately decreasing its recall.

The allotted budget for each topic. In Figure 2, we report the
budget allotted to each topic using CAL for document selection, and
MAB and RR for topic selection on TREC8, WT2013, and WT2014



Figure 1: Recall of relevant documents achieved by Oracle, Multi-armed bandits (MAB), and Round-robin (RR) topic selection
methods as a function of varying evaluation budget on WT2014 and WT2013 collections. The x-axis shows total cost over all
topics. Plots are grouped vertically for CAL, SAL, and SPL document selection methods.

Figure 2: The budget (# of judged documents) across topics using MAB and RR with CAL document selection on TREC8,
WT2013 and WT2014 test collections with total budget of 10,000. The bar plots show per-topic budget in the original qrels.

when the overall budget is 10,000. We can see that MAB-based
topic selection varies the judging budget used across topics. For
RR, the number of judgments per topic varies only due to the
varying number of seed documents used to start AL. Ignoring the
cost of seed documents, all topics would have the same number
of judgments per topic in RR. Thus as expected, RR has a lower
variance in budget allocation per topic than MAB.

Comparison against pool-based methods.We compare our
approach, MAB with CAL (MAB+CAL) against two state-of-the-art
pool-based dynamic document selection methods: MoveToFront
(MTF) [9] and theMaxMean Non-Stationary (MM-NS) [18].Table 2
presents the average number of relevant documents found per topic

of TREC-8 collection. We copy the MM and MTF results reported in
[18]. Note that for MTF and MM-NS, we have to manually specify
a fixed budget per topic. In contrast, MAB+CAL intelligently learns
the budget allocation per topic dynamically.

Table 2 shows that MAB+CAL finds a higher average number of
relevant documents per topic than MTF and MM-NS in all cases,
despite the fact that both MTF and MM-NS utilize the document
ranking information from the submitted runs in a shared task.

RankCorrelation. One of the ways to evaluate the reliability of
a low-cost evaluation method is to compare the resultant ranking of
IR systems with the ranking produced by all qrels. Thus, we build
qrel sets using CAL for document selection, and RR, MAB, and



Figure 3: Result of Kendall’s τ rank correlation score between the ranking produced using the official qrels and the rank-
ing produced using qrels created by Oracle, MAB and RR with CAL over varying budgets on TREC8, WT2014 and WT2013
collections. Rankings are produced using MAP (top row) and P@10 (bottom row).

Oracle for topic selection varying the total budget from 3K to 13K,
and calculate Kendall’s τ rank correlation between ground truth
ranking and the resultant ranking for each case. We use MAP and
P@10 as the evaluation metric. The results are shown in Figure 3
for TREC8, WT2013 and WT2014 test collections.

For the bottom row of Figure 3 (Kendall’s τ rank correlation
for P@10 evaluation), we see that with low judging budget, MAB
provides better τ correlation than RR for test collections with lower
prevalence ratio per topic (i.e., TREC8). Specifically, MAB achieves
τ = 0.9 (a traditionally-accepted threshold for acceptable correla-
tion [27]) when the total budget is 6500, which is only 7.4% of the
original allotted budget for TREC8. However, results are less clear
for test collections with a higher prevalence ratio. For example,
MAB outperforms RR for WT2014 but RR outperforms MAB for
WT2013 in terms of AUC.

When we compute Kendall’s τ for MAP evaluation (Figure 3, Top
Row), both Oracle and MAB actually perform worse than RR across
test collections. Since MAP is a recall-based metric, it considers the
full judgment pool for each topic, whereas P@10 takes account only
the first 10 documents. This suggests the current MAB approach
may work well for shallow metrics but not for deep ones.

Recall that RR allocates the same budget across all topics, whereas
MAB-based topic selection yields a varying number of documents
across topics (Figure 2). This is because MAB seeks to optimize
the number of relevant documents [9, 18]. Oracle optimizes this
same objective function as MAB but even better, knowing the ex-
act prevalence ratio of each topic, which MAB must learn. Results
thus suggest that our MAB-based approaches spend the budget
excessively on topics with high prevalence ratio, causing judging
few documents for the topics with low prevalence ratio. Some-
times, MAB outperforms Oracle seemingly because its imperfect
estimate of prevalence leads it to explore more and exploit less.
Thus, while MAB approaches succeed in finding more relevant
documents, we observe a metric divergence between what is being
optimized (recall) and what we actually care about: reliable evalua-
tion, as measured by rank correlation. Moreover, results underscore

the importance of evaluating test collection creation methods via
rank correlation, and not only by recall of relevant documents [18].

Furthermore, when we compare the results across collections
for MAP score in Figure 3, we find that the performance difference
between RR and MAB-based approaches are much higher in col-
lections with a high prevalence ratio (i.e., WT2013 and WT2014)
than a low prevalence ratio (i.e., TREC8). This signifies the fact that
in terms of MAP, MAB-based approach produces a more reliable
evaluation for test collections with a low prevalence ratio than test
collections with a high prevalence ratio. This is another promis-
ing result of our MAB-based approach which encourages further
empirical evaluation.

5 CONCLUSION AND FUTUREWORK
This work investigates the feasibility of developing a minimal cost
test collection without organizing a shared task. In the absence
of shared task document rankings to prioritize relevance judging,
we utilize active learning [25] instead. Furthermore, we intelli-
gently and dynamically allocate judging effort across topics via
multi-armed bandits [21]. Results on the three different TREC test
collections indicate that by utilizing an average of only 48% of
the total budget (Table 1) allocated in these test collections, our
best approach, MAB+CAL, not only finds 90% of the relevant docu-
ments (Figure 1) but also achieves a Kendall’s τ rank correlation
value of 0.90 with the original system ranking when the correla-
tion is computed using P@10 (Figure 3, Bottom Row). However,
further work is needed to effectively support more recall-oriented
IR evaluation metrics such as MAP. Current results suggest that
our MAB-based approaches spend the budget excessively on topics
with high prevalence ratio, judging too few documents for topics
with low prevalence ratio. Future work might usefully explore more
sophisticated bandit approaches (e.g. contextual bandits).
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