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ABSTRACT
We present Mash, a library that provides software tools for devel-
oping interactive and transparent machine learning systems. Mash
provides tools for (1) back end: specifying machine learning models,
and (2) front end: generating User Interfaces (UIs) that allow non-
technical end-users to interpret and interact with the models. In the
back-end, Mash includes probabilistic modeling and computation
graph utilities. On the front-end, UIs generated by Mash enable
end users to examine the model’s predictions, manipulate model’s
parameters, and observe changes in model’s predictions. Together,
Mash can help developers rapidly build new models and obtain
feedback from end users. We present two case studies in which
Mash UIs enable end-users to: (1) assess model fairness in predict-
ing student performance, and (2) explore movie recommendations.
To support future work, we will open source Mash.
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1 INTRODUCTION
The traditional goal of machine learning (ML) is to create accurate
predictors. In a typical development process, ML developers are
provided a dataset and are tasked with building a prediction system
that achieves high performance as measured by standard metrics
such as accuracy. The system is then often presented to end users
as a black box, with little interactive capability. A user interface (UI)
may be built, but the interactions are often limited to specifying the
inputs and observing the outputs; the black box remains opaque.
Although that development process has been successful, there are
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many applications where richer end-user interactions are beneficial
or even necessary: when the systems are used to make high-stakes
decisions that affect people, when human knowledge or creativity is
needed, or when the capability to explore the systems’ predictions
may help engage users.

Developing ML systems capable of providing rich interactions
is a difficult and lengthy process, as it involves the integration
of back-end predictive model building with front-end UI design.
If developers focus only on optimizing predictive performance
without considering end users then the system may become too
complex for end users to meaningfully interact with.

To address these issues, we propose Mash, a library for develop-
ing interactive and transparent ML systems. For developers, Mash
facilitates ‘user-aware’ ML development, where predictive models
are integrated with associated UIs. For end-users, Mash-generated
UIs enable rich interactions with ML systems, helping the users
make decisions, explore the systems, or inject their knowledge into
the system.

Advances inML are often accompanied by software libraries. The
success of Support Vector Machines (SVMs) in the 2000s was due in
part to software packages such as LIBSVM [11] and SVMLight [21].
Recent progress in ML has been accelerated by the availability of
many probabilistic programming and computation graph libraries
(PyMC [28], Stan [9], Theano [5], Tensorflow [1], PyTorch [27], and
others). The creation of specialized software tools for transparent
and interactive ML, such as Mash, has the potential to similarly
accelerate progress.

Mash integrates existing ML libraries with tools for generating
UIs automatically, including tools for specifying how an end-user
can interacts with the models (for example, the end-user can inspect
and manipulate some of the model parameters and observe how
these change the prediction). Given these tools, developers can
build systems with end-users in mind: they can construct or identify
intelligible components in the systems to expose to end users. For
instance, developers may define a model with a sparsity constraint
(requiring a large number of parameters to be zeros) and define the
UI to include only non-zero parameters for users to interact with.

We demonstrate the applicability of Mash in two case studies.
First, we consider predicting student performance using linear re-
gression, mixed effects model, and neural networks. Such predic-
tions can be used to make important decisions, which may raise
the question of fairness. For example, a ML system that supports
student admission decisions [36] must be fair with respect to race
and gender. Second, we present an interactive movie recommenda-
tion UI powered by probabilistic matrix factorization [31], allowing
users to directly manipulate model parameters to explore recom-
mendations.
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2 RELATEDWORK
2.1 Model visualization
Software tools for visualizing ML models exist: TensorBoard [1],
ShinyStan [9], ModelTracker [4] and others [19]. However, they
aim at helping developers debug models, or helping expert users
(who have ML knowledge) understand and deploy systems. Tools
that aim at non-expert users (Tensorflow Playground or ConvnetJS)
are mainly educational and are used in toy problems. In contrast,
we aim at helping developers generate UIs to assist non-expert
end-users in interpreting and interacting with ML models in real
world problems.

The recently released What-if tool1 enables the manipulation of
the data to observe how the prediction changes. Mash goes further
in enabling the manipulation of the internal model parameters.
Furthermore, What-if is a post-hoc tool on built models, while
Mash is a development tool for building models.

2.2 Interpretable machine learning
Two main directions in this area are developing inherently inter-
pretable models, and (2) probing black box models to generate
explainations. In the first direction, popular methods are decision
trees [29], sparse linear models [33], and additive models [10]). Al-
though these methods facilitate user interpretation, their predictive
performance can be limited.

In the second direction, recent work has considered using a
simpler model to approximate a complex black-box model [30]
or finding the most influential training examples [22]) for each
test instance. These methods can provide insights into black-box
models. However, their explanations may not be faithful since they
are simpler approximations to complex models.

There has also been concern that ‘interpretable’ is not a well-
defined concept [24], and that amore ‘rigorous science’ is needed [14].
Other than providing the tools for developers, we see Mash as a
framework toward a ‘science of ML interpretation’. By building the
general tools instead of focusing on a model or an application, we
expect to see general principles for ML interpretation.

2.3 Interactive machine learning:
Work in this area aims at using human interaction to improve ML
systems [3] in a number of applications: image segmentation [15],
text classification [23], and image search [16]. Our work aims at
creating the tools for building UIs that enable the interaction be-
tween humans and ML systems. We focus on system transparency,
although user interaction can be used to improve system prediction
performance.

2.4 Development tools for human computation
Turkit [25] is a tool for developing iterative crowdsourcing tasks,
such as iteratively improving text [6]. Jabberwocky [2] provides a
programming environment for social computing. These tools have
roughly the same goal: providing an abstraction layer connecting
back-end and front-end components in order to help developers
focus on high-level ideas in human computation algorithms. Mash
has a similar goal for developing ML systems.

1https://ai.googleblog.com/2018/09/the-what-if-tool-code-free-probing-of.html

Figure 1: Mash and its main dependencies.

3 BACKGROUND
3.1 Computation graphs
Computation graph libraries (Theano [5], Tensorflow [1], PyTorch [27]
and others) provide the tools for defining operators (from scalars,
vectors, and matrices to tensors) and operations (arithmetic, in-
dexing, conditioning). The key functionality of these libraries is
automatic differentiation, which enables gradient based parameter
learning. In the development of new deep neural networks models,
these computation graph libraries have become essential: without
them, developers would need to tediously derive gradients for all
variables in the networks (and repeat after every change).

3.2 Probabilistic programming
Probabilistic programming systems (PyMC [28], Stan [9], BUGS [32],
Anglican [34] and others) provide the tools for defining probabilis-
tic models, which are probability distributions over a collection
of random variables. Probabilistic models can also be interpreted
as computation graphs in which the operators (scalars, vectors, ...)
are ‘lifted’ from fixed values to random variables. Similar to auto-
matic differentiation, probabilistic programming systems provide
the key functionality of automatic inference: infering the distri-
bution over all variables given the observed data. Markov Chain
Monte Carlo [17] and Variational Inference [35] are two families of
commonly implemented automatic inference methods.

Probabilistic modeling is the foundation for many popular ML
algorithms: mixture models, probabilistic matrix factorization for
recommendation [31], Latent Dirichlet Allocation (LDA) topic mod-
els [7], and others. The advantage of a probabilistic approach is the
clear meaning of variables in the models and the uniform represen-
tation of uncertainty. However, this approach often does not scale
well to very large datasets.

4 SYSTEM
Mash uses Theano [5] for computation graphs, PyMC [28] for prob-
abilistic modeling, Dash2 for web application building, and React3
for user interface rendering. Figure 1 shows Mash and its depen-
dencies on other tools.

Consider a linear regression model to predict student grades
from two features: ‘study time’ and ’health’ (we will later use this
example as a case study). Linear regression simply assumes that
the target (grade) is a linear combination of the features:

2https://github.com/plotly/dash/
3https://github.com/facebook/react
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Figure 2: UI generated by Mash for Linear Regression (with
Bayesian priors) for predicting student grades.

grade = α + βS × studytime + βH × health + ϵ (1)

where α , βS , and βH are the parameters to be learned and ϵ is
Normally distributed random noise. Taking a Bayesian approach,
we place zero-mean Normal priors on all parameters. These priors
help regularize parameter estimates to avoid over fitting.

Source code for using Mash to implement this model and speci-
fying the UI is shown below:
1 import mash as ms
2 m = ms.Model()
3 # Assume data is a Pandas dataframe with 3 columns:
4 # studytime, health, and observed_grade
5 m.set_pd_data(data)
6
7 with m:
8 # Priors on parameters
9 alpha = ms.Normal('alpha', mu=0, sd=10)
10 beta_S = ms.Normal('beta_S', mu=0, sd=10)
11 beta_H = ms.Normal('beta_H', mu=0, sd=10)
12 sigma = ms.HalfNormal('sigma', sd=1)
13
14 # Likelihood
15 grade = ms.Deterministic('Grade', alpha +
16 beta_S * m.data['studytime'] +
17 beta_H * m.data['health'])
18 observed_grade = ms.Normal('Observed_Grade',
19 mu=grade, sd=sigma,
20 observed=m.data['observed_grade'])
21
22 # Set the roles of variables
23 m.set_prediction(features=['studytime', 'health'],
24 params=[alpha, beta_S, beta_H],
25 predict=grade)
26
27 m.inference()
28
29 # Define UI
30 ui = ms.UI(model=m)
31 ui.add_sliders(['studytime', 'health',
32 'alpha', 'beta_S', 'beta_H', 'Grade'])
33 ui.run_server()

Figure 2 shows the generated web UI, which consists of six
sliders. The two data sliders (studytime and health) are set to their
default values (they can also be set to the values of some test dat-
apoints). The three model parameter sliders (alpha, beta_S, and
beta_H) are set to the values that the model has learned from the
training data. These first five sliders can be manipulated by the
end-users, while the prediction slider (Grade) reacts to these manip-
ulations. For example, if an end-user moves the ‘studytime’ slider,
the ‘Grade’ slider will move to the model’s predicted grade for a
student with the selected study time. End-users can also move a
model parameter slider such as alpha and observe the change in the
model’s prediction. This interaction may help end-users make sense
of how the model works internally. The overall UI also provides

transparency in letting end-users see and interact with model’s
parameters. We note that the developers make the decisions on
which data features and model parameters to add to the UI. There
is a trade-off between adding all parameters for more transparency
vs. adding fewer parameters for easier end-user sense-making.

In general, developers use Mash by declaring an ML model and
declaring the corresponding UI. Under the hood, Mash creates a
PyMC probabilistic model, extracts a Theano computation graph,
matches the UI elements to features or model parameters, sets up
callbacks for handling interactions, and renders the interface.

For back-end ML model building, Mash provides:
• Placeholders for data.
• Common probability distribution (e.g. Normal).
• Operations on data or model parameters (arithmetic, index-
ing, and matrix operations).

For front-end UI, Mash provides:
• Sliders for manipulating data or parameters, or for observing
model’s predictions.

• Graphs for plotting data.
• Markdown text for explaining the model and instructing
end-users.

Mash also connects back-end and front-end components auto-
matically, enabling developers to focus on declaring what they want
in the ML model and the UI.

5 CASE STUDIES
5.1 Predicting student performance
Some institutions have used ML systems to support making stu-
dent admission decisions to their programs [36], due to the rapid
increase in the number of applicants. Although reducing the work-
load for the admission committee, these systems raise the issue
of fairness and transparency: how do we know these systems do
not discriminate between students based on race or gender, even
though these attributes are not used as features for the predictors?
For example, a common feature is the student’s current school. If
a system has a negative weight on an all-female school then that
system may discriminate between students based on gender (al-
though it is also possible that the system has correctly identified
a school with low quality teaching). Fairness in ML is an active
research area, such as in the context of credit rating or criminal
justice. Many criteria for fairness have been proposed [26], such as
equality of opportunity [18] or demographic parity [8], but there
is still no consensus. Technical criteria may provide some insight,
but fairness is a more complex concept, which necessitates human
interpretation.

In this case study, we address the issue by making the system
transparent to the end-users, who might be responsible for making
admissions decisions. We use the Student Performance Dataset
from the UCI repository [12, 13] and implement three models: linear
regression, a mixed effects model, and neural networks.

Our linear regression implementation is presented in the pre-
vious section. In this case study, to help end-users assess model
fairness, we include an interactive histogram of the model’s predic-
tions with respect to student gender (Figure 3):
1 m.set_pd_test_data(test_data)
2 ui.add_test_histogram(hue='gender')
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Figure 3: The interactive histogram showing themodel’s pre-
dicted grades by student gender: the x-axis is the grade, the
y-axis is the number of students in the provided test dataset.

Figure 4: The UI for the mixed effects model.

The interactive histogram reacts to end-users’ manipulations of
the model parameters. If the end-users determine that there are
biases, they can try to manipulate model parameters to reduce these
biases. Other visualization techniques for assessing fairness are
possible. For example, another histogrammay show the distribution
of the prediction errors for each gender.

Our mixed effects model extends linear regression in specifying
a random effect on the intercept parameter α based on the school
that the student attends4:
1 school_alphas = ms.Normal('school_alphas',
2 mu = alpha, sd=1, shape=(2,))
3 grade = ms.Deterministic('Grade',
4 school_alphas[m.data['school']] +
5 beta_S * m.data['studytime'] +
6 beta_H * m.data['health'])

In the dataset, there are two schools called MS and GP. The first
line generated an intercept α for each school. Next, in line 4, we
select the intercept based on the school that the student attends
(m.data['school'] is 0 if the school is MS and 1 if the school is
GP). Figure 4 shows our interface, in which end-users can specify
the school of the student (in addition to study time and health).
End-users can also inspect and manipulate the intercept α for each
of the two schools.

4This random effect can be written in R formula as (alpha |school)

Figure 5: The interface for our Bayesian neural networks.

For (Bayesian) neural networks, we implement a model with two
hidden units, F0 and F1. The model’s parameters are: weights from
the inputs to the hidden units, and weights from the hidden units
to the final grade prediction. The value of a hidden unit is a linear
combination of the inputs passed through a non-linear activation
function (we use the tanh function):

F0 = tanh[studytime ×W (studytime, F0)+
health ×W (health, F0)] (2)

Where W(X,Y) is the weight from X to Y (for example the weight
W(health, F0) connects the input health to the first hidden unit
F0). In Figure 5, we display our UI. End-users can manipulate data,
manipulate model parameters, and observe the predicted grade
(similar to previous UIs). A potential issue is that the hidden units
F0 and F1 have no obvious interpretations. Furthermore, for ap-
plications with a large number of features, the large number of
parameters in a neural network may make it difficult for user to in-
spect and manipulate. To address these, developers can implement
sparsity or disentangled representations [20] to reduce the number
of parameters and construct hidden units with clearer meanings.

5.2 Movie recommendation
Recommendation systems provide suggestions of items to users.
For instance, a movie recommendation system may suggest new
movies to a user given the ratings that user gave to other movies,
often leveraging a large dataset of previous ratings.

Explanations for recommendation systems exist and have been
widely used in commercial systems such as in Netflix, but they are
typically static, such as ‘people like you also watch’. In this case
study, we consider making a recommendation system transparent
and interactive to users. Users can directly manipulate the model’s
parameters, and observe how the recommendation changes. This
is useful for users to see how the system works, explore different
recommendations, or find recommendations for friends.

One of the most common techniques for recommendation is
Probabilistic Matrix Factorization (PMF) [31], in which the system
identifies and estimates a number of hidden factors for each item
(movie) and user (viewer). Assuming that there are n users andm
movies. The idea in PMF is to factor the n ×m ratings matrix into
two matrices: a n × k user matrixU and am × k movie matrixM ,
where k is the number of factors (which is usually set to a small
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number, we set k = 3). PMF assumes that the rating by user i for
movie j is the dot product of two k dimension row vectors:Ui and
Mj . Intuitively,Ui describes user i andMj describes movie j. Our
implementation first defines the PMF model:
1 # User matrix
2 Users = ms.Normal('Users', mu=0, sd=1,
3 shape=(n_users, n_factors))
4
5 # Movie matrix
6 Movies = ms.Normal('Movies', mu=0, sd=1,
7 shape=(n_movies, n_factors))
8
9 # Rating matrix
10 rating = ms.Deterministic('Rating',
11 Users[m.data['userId']]
12 .dot(Movies[m.data['movieId']].T))

We next define the UI:
1 # Sliders for selecting user and movie
2 userId = ui.add_slider('userId')
3 movieId = ui.add_slider('movieId')
4
5 # Shows the name of the selected movie
6 ui.add_dynamic_text(data=movie_names,
7 from_index=movieId)
8
9 # Sliders for user factors
10 for i in range(n_factors):
11 ui.add_slider('Users', (0, i),
12 display_name='User F' + str(i))
13
14 # Sliders for movie factors
15 for i in range(n_factors):
16 ui.add_slider('Movies', (0, i),
17 display_name='Movie F' + str(i))
18
19 # The predicted rating
20 ui.add_slider('Rating')

In Figure 6, we show our UI, where end-users can: (1) select a
user (movie viewer) and a movie, (2) manipulate the factor values
for the selected user and movie, and (3) observe the predicted rat-
ing (also for the selected user and movie). A potential difficulty is
that the factors (F0, F1, and F2) have no clear meanings. To better
understand the predictions, the end-users may need to look at a
large number of movies and movie factors. For example, if the value
of ‘Movie F0’ is consistently high for action movies, then the factor
F0 may be correlated with that genre. End-users can then interpret
the value of ‘User F0’ as a measure of how much the selected user
likes action movies.

6 DISCUSSION
6.1 Conclusion
We have presented Mash, a software library for developing inter-
active and transparent ML systems. We also presented our Mash
implementations of four models in two case studies. We see Mash as
a step toward better interactions between human and ML systems.

6.2 Limitations and future work
Mash is built on top of PyMC [28], which has a limitation in scal-
ing to large datasets, and Theano [5], which is no longer in active
development. Future work could integrate Mash to more recent ML
libraries such as Tensorflow [1] or PyTorch [27]. The main inter-
actions in Mash-built UIs are manipulating sliders and observing
model predictions, which could be difficult for end-users in applica-
tions with a large number of features or parameters. Future work

Figure 6: The interface for our movie recommendation sys-
tem based on PMF.

may develop techniques for interacting with high-dimensional fea-
tures or parameters.
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