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ABSTRACT
While use of Mechanical Turk (AMT) studies [2, 22] is per-
haps the best known example of crowdsourcing in the NLP
community, not only do other paid platforms exist with dif-
ferent capabilities [23], but successful volunteer-based crowd-
sourcing initiatives are also bountiful, ranging from games [25,
16, 8] to to citizen science or humanities [21, 9, 3, 15], to
less common avenues such as enabling self-discovery [17] or
mining additional value from existing activities [26]. Moti-
vation [18], design [1], and localization [10] all provide value.
This paper draws on earlier work with Omar Alonso [13].

1. MOTIVATION
Different people are motivated by many different incen-

tives, which can operate independently or in combination.
Design of appropriate incentives for the given task at hand
is referred to as incentive engineering. To motivate peo-
ple to perform work (and do it well), incentive mechanisms
explored inlucde: pay, fun, prestige, socializing, altruism,
barter, and learning. For example, with citizen science,
scientists or non-profits distribute work to volunteers mo-
tivated by altruism, learning, and/or opportunities to so-
cialize (e.g., galaxyzoo.org, ebird.org). Games with a Pur-
pose (www.gwap.com), on the other hand, motivate work
via opportunities for fun, socialization, and prestige. The
re-Captcha project (recaptcha.net) re-purposes an existing,
ongoing activity (solving captchas) to extract useful work
as a by-product. von Ahn’s most recent DuoLingo project
(duolingo.com) incentivizes translation work by the oppor-
tunity to learn a foreign language.

Many AMT studies have found distribution of HITs com-
pleted across the workforce tends to follow a power-law dis-
tribution, with a few workers doing much of the work and
many workers doing very little work [22]. It is not clear to
what extent that is a natural product of online crowd work,
of AMT in particular, of the type of tasks being posted,
or due to other factors. This has led some requesters to
view crowdsourcing not as utilizing a large crowd to per-
form work, but filtering a large crowd to find a few people
to do the work. For statistical approaches to quality assur-
ance, a resulting challenge is estimating quality of individual
worker contributions for those workers who contribute few
labels, representing a sparse data problem.

2. TASK DESIGN VS. AGGREGATION
As crowdsourcing is inherently a human-centric enterprise,

attention (or inattention) to human factors will clearly im-
pact the quality of data collected from the crowd. While
poor quality of crowd data has been often blamed on lazy
and/or ignorant workers, task instructions and/or interfaces

poorly designed for non-experts may be equally culpable.
Moreover, if task instructions are unclear, or a task inter-
face poorly designed, the inevitable low quality of crowd
data can at best be ameliorated by statistical methods. It
is somewhat remarkable, given this, that machine learning
approaches to quality assurance represent one of the most
studied areas of research in crowdsourcing [12, 19].

Approaches to quality assurance based on human factors
vs. statistical methods are largely complementary, allowing
each to be independently studied in controlled experimenta-
tion. However, the quality of data collected from the crowd
may vary significantly under different task designs. Con-
sequently, investigation of statistical quality assurance al-
gorithms should take into consideration the highly variable
quality of crowd data to be encountered in practice. This
impacts both comparative benchmarking of alternative tech-
niques, as well as measuring robustness [19].

A very important aspect of any crowdsourcing activity in-
volves asking the right questions. Intuitively, this step seems
very easy and straightforward to implement but in practice
it could produce undesirable results if it is not taken seri-
ously. Humans design a task that needs to be completed by
another human so a precondition for proper communication
is the use of simple language to convey expectations.

A worker is part of multilingual and multicultural dis-
tributed workforce and they need to understand questions
consistently. The requester of the task has to make sure
that all workers have a shared, common understanding of
the meaning of the question. What constitutes a good an-
swer or good work should be communicated to the workers.
Examples of good and bad responses are encouraged. There
is no need to use specific terminology unless all workers are
expected to be experts on a particular subject. A common
mistake when setting up crowdsourcing experiments is to
condense too many questions on a single task. At any given
day, requesters compete for workers so a simple and pre-
cise task is a much better technique for attracting the right
crowd. Partitioning a larger task into atomic micro-tasks
that can be easily completed in little time is important.

Some interesting recent work has shown workers responses
either predicted or generated by others workers and found
this to be quite valuable [4, 5]. We have found annotator
rationales valuable in crowdsourcing task design [14], beyond
their original proposed value for dual supervision.

3. ETHICS
While optimizing worker behaviors and investigating tech-

nological opportunities and challenges is clearly important
and valuable work, how might we best wrestle also with
questions about what is ethical, legal, and sustainable eco-
nomic practice in crowd work [20, 7]. For example, is it



truly preferable to pay people nothing, i.e., having workers
play online games which generate valuable work products
as an output (which the workers may not be aware of, and
which may generate revenue which the workers do not bene-
fit from) [11], than to pay them low wages and clearly com-
municate to workers they are performing work [7, 6]? The
recent case of prisoners compelled to perform gold farming in
online games provides another example of what is ostensibly
a game developing significant revenue, and thereby leading
to forced labor [24]. As the industry of crowd work grows,
these pressures will continue to grow in force. How might
we monitor and mitigate the corresponding growth of such
practices with at-risk populations?
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