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ABSTRACT
We describe methodology and evaluation for a new find-
similar search task: the user specifies a source painting and
seeks other stylistically similar paintings, regardless of the
source painting’s subject (i.e. the object, person, or scene
depicted). We formulate this search as a content-based im-
age retrieval task, modeling stylistic similarity via detected
color, intensity in color changes, texture, and sharp points.
Additional features from machine vision are used for local
patches and the overall scene. To evaluate both the task
difficulty and system effectiveness, 90 people with varying
knowledge of art were asked to judge stylistic similarity be-
tween different pairings of 240 paintings. To obtain these
judgments, we utilized Amazon Mechanical Turk, and we
discuss design issues involved in working with the platform
and controlling for quality in a crowdsourced setting. Re-
sults of 3128 judgments show both task difficulty, with ap-
proximately 50% to 76.5% agreement between judges, and a
range of accuracies of system features vs. human judgments.
Most promising, features based on Leung-Malik filters [10]
achieve roughly 80% agreement with knowledgeable judges.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models; H.5.2 [User Interfaces]: Theory and methods;
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis

General Terms
Algorithms, Experimentation, Human Factors

Keywords
search, image analysis, crowdsourcing, Mechanical Turk

1. INTRODUCTION
Finding similar items is a natural human activity and

one for which automated systems are commonly employed
in practice when the number of items being searched is
large [17]. In computer vision, applications such as surveil-
lance and content-based search of objects or faces require
modeling similarity of photographs or video frames. In this
paper, we consider a potentially more challenging task: find-
ing similar paintings on the basis of stylistic similarity. One
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potential application of such automation would be as part of
a content-based art recommendation search engine in which
the user might identify a painting she liked in order to re-
ceive recommendations of other paintings she might enjoy.
Note that we are interested in evaluating similarity without
explicit knowledge regarding the author of the painting.

While machine vision techniques for analyzing photographs
and video have received significant attention, relatively little
work has investigated analysis and feature design of artistic
imagery. There has been some work in developing descrip-
tors for categorizing paintings according to their authorship,
such as the fractals-based features for recognizing paintings
by Jackson Pollock due to Irfan and Stork [8]. Vill and Sab-
latnig overview another type of feature for describing brush
strokes [20]. Hertzmann et al. develop an algorithm for au-
tomatic learning of painting styles by example [7], and their
approach uses features such as luminance and texture, but
their task involves synthesis while we are concerned with
analysis, so their feature mapping and search techniques are
not necessarily appropriate for image retrieval. Another art-
related project is Hany Farid’s art forensics [5]. The most
similar work we are aware of, by Li and Chen, predicted
painting quality using human judgments [11].

While style is a broad concept, we model it in our sys-
tem primarily via low-level features capturing color palette,
intensity or smoothness of color changes across an image, ap-
pearance and granularity of brush strokes, density of sharp
points and edges in a painting, and texture of the painting.
We use a number of well-known descriptors and adapt oth-
ers to the task at hand (§3). Once features are extracted,
stylistic similarity is modeled via distance between image
feature vectors under a χ2 kernel (§4).

To evaluate both task difficulty and system effectiveness
(§6), we asked people with varying knowledge of art to judge
the stylistic similarity between various pairs of paintings.
We crowdsourced this similarity judging task as a Human
Intelligence Task (HIT) in Mechanical Turk (MTurk)1, as
further discussed in §5. While platforms like MTurk reduce
many technological barriers to crowdsourcing, a variety of
practical challenges remain which can limit the practical ef-
fectiveness of the crowdsourcing paradigm [4, 14, 19]. Fol-
lowing community recommendations for effective HIT de-
sign, 90 human judges with varying knowledge of art com-
pleted 3128 similarity judgments at a total cost of $12.09.
Despite several measures taken to provide quality control,
inter-annotator agreement was roughly 50% to 76.5%, sug-
gesting the inherent difficulty of the task even for people.

1https://www.mturk.com



System features based on Leung-Malik filters [10] showed
highest predictive accuracy, achieving roughly 80% agree-
ment with knowledgeable human judges.

2. DATA
We collected a dataset of paintings by 6 authors and 40

images per author, for a total of 240 images. The authors
and their artistic styles are listed in Table 1. Sample paint-
ings from each author are shown in Figure 1. The images
were downloaded from Wikimedia Commons [2].

Painter Primary Style
Francisco Goya Romanticism
Ernst Kirchner Expressionism
Gustav Klimt Symbolism, Secession
Franz Marc Expressionism

Claude Monet Impressionism
Vincent van Gogh Post-Impressionism

Table 1: Authors in our dataset and their styles,
according to Wikimedia’s sister project Wikipedia.

3. FEATURES
To model painting style, we consider two broad classes of

features: global and local. Global features represent the im-
age holistically, while local features describe individual small
patches of the image. Color, Phog and Gist are global fea-
tures, while extracting corners and measuring the image’s
response to a set of filters are local approaches. However,
since we wish to arrive at a representation of the painting
as a whole, rather than recognize individual objects in it,
we adapt the descriptors and achieve global representations.
Below we describe both the method for computing each fea-
ture, as well as how it is expected to help distinguish between
the artistic style in different paintings. Table 2 below lists
the feature types used and their referring acronyms.

Acronym Feature
CC Color cells

CC-2 histogram version of Color cells
IP1 number of interest points at different scales
C Color
P Phog
G Gist

IP2 strengths of interest point detections
IP2-2 histogram of strengths of interest points
F1 responses to LM filters

F1-2 histograms of responses to LM filters
F2 responses to RFS filters

F2-2 histograms of responses to RFS filters
F3 responses to S filters

F3-2 histograms of responses to S filters
All combination of all feature types

Table 2: Feature types.

3.1 Color Features
One of the simplest descriptions of an image is the color

distribution of the whole image. This description can be

encoded in the form of a color histogram. To produce such
a histogram, we examine the intensity of color along the
different channels of some color space, such as RGB, HSV,
or CIELAB, the last of which is used in our work. Next,
we designate a set of “bins,” each of which corresponds to
some intensity range, and count how many pixels fall into
each bin. The combination of the bin counts for each color
channel constitutes our color histogram for the image. We
call this feature type “Color.”

A variation of this feature can be used to examine how
color changes across an image. If color changes smoothly in
the painting, it is likely that it is an impressionist painting,
while if the color changes are abrupt, perhaps the image is
an expressionist painting. We devise the feature type “Color
cells” which consists in the following. We place an imaginary
grid over the image with some user-specified size nxn, where
n is the number of grid cells along each dimension. We then
compute the color histogram of each grid cell individually.
Next, for each pair of grid cells, we compute the Euclidean
distance between their color histograms, and we concatenate
all distance values. The string of values becomes a new
representation of the image.

The “Color cells” feature is sensitive to orientation be-
cause it requires that regions of great color changes between
two images happen at the same place. To remove this limi-
tation, we also compute a histogram over the distance values
string and use this as the new feature representation.

3.2 Phog Features
A common feature used in computer vision is Histogram of

Oriented Gradients (HoG). We use this as a standard feature
type, rather than one that is expected to be particularly
suitable to paintings. As shown in Figure 2, a HoG feature
describes the strength of the gradients in a fixed number of
orientations (8 in this case), so if the histogram is computed
on the whole image, the feature vector will be 8-dimensional.
If histograms are computed on each cell in a 2x2 grid, the
dimension of the feature vector will be 2x2x8=32.

Figure 2: HoG feature computation. Image courtesy
of Kristen Grauman.

We use the implementation of a version of HoG named
Pyramid Histogram of Oriented Gradients (PHOG), which
computes HoG at different granularities, due to Bosch and
Zisserman [3]. At the base pyramid level, the HoG is com-
puted for the whole image, but at the next level, the image
is broken up into 2x2 regions and the histogram of oriented
gradients is computed individually for each grid cell. At
the next level, each grid cell is broken up further, and so
forth. We use 4 pyramid levels in total (the default number
of levels provided in the code by [3]) and concatenate the
histograms for each level.

3.3 Gist Features
One popular global feature is Gist, due to Oliva and Tor-



Figure 1: Sample paintings in the dataset.



ralba [13]. Gist features describe the energy spectra and
the frequency of change in the images, using Fourier trans-
forms. In [13], Gist features are used for categorizing scene
types, and natural images are shown to have different spec-
tral templates than urban images. We use this feature type
because we expect that it can capture the global “feel” of
a painting, which is a slightly higher-level (and more sub-
jective) concept than the rest of the style markers we use.
However, Gist was not designed specifically for paintings, so
we consider it a generic feature type.

3.4 Interest Point Features
One mark of style is the smoothness of the appearance

of the painting. If the strokes in the image are rough, there
will be a large number of points where the edges and corners
in the image appear, corresponding to locations of large in-
tensity changes. To measure the frequency of such intensity
changes, we develop interest point features.

There is a variety of interest point operators in computer
vision. These operators seek parts of the image which are
worth describing with local patches, if the patches were to be
sparse as opposed to densely sampled. One type of interest
points are corners in an image, which are locations of large
intensity gradients in both the x and y dimensions, as shown
in Figure 3. These corners can be detected at multiple scales.
As a new representation of our image, we count how many
corners were detected at each scale, and name this feature
type “Interest Points 1.”

Figure 3: Corner interest points. Image courtesy of
Kristen Grauman.

We can also use the strengths of the detected corners as
a description of the style of the image. We concatenate the
strength value for each detected corner, and this becomes
the feature “Interest Points 2.” Since two images can and
likely will have a different number of detected corners, when
comparing the feature vectors of two image, we pick a ran-
dom sample of the values in each vector so that the two
vectors are of the same size. Alternatively, we can com-
pute a histogram by binning the strength values, and use
the histogram for each image as its feature representation.

3.5 Filter Bank Features
Our last feature type seeks to record the type of brush

strokes which appear in each painting. To do that, we com-
pute the response of an image to a number of filters from
a filter bank, using code from [1]. The response values are
obtained by computing a 2-d convolution between the im-
age and the filters. The three filter banks we use are the
Leung-Malik (LM) filter bank [10], the Schmid filter bank
[15], and the Maximum Response (MR, also denoted RFS)
filter bank [6]. Some of these filters resemble brush strokes.

The filters from the LM bank are shown in Figure 4.

Figure 4: The Leung-Malik filter bank. Image cour-
tesy of http://www.robots.ox.ac.uk/∼vgg/research/
texclass/filters.html.

Once a response has been computed, we can combine re-
sponse values into a vector or histogram the responses. Thus
for each type of filter bank we have two feature types.

4. COMPUTING SIMILARITY
For each feature type, we have a vector for each image cor-

responding to this image’s representation according to the
given feature descriptor. To compare the similarity between
images, we need a way to compute a distance between them
using one or more of their feature vectors. For this purpose,
we compute a χ2 kernel K as defined in [9]. K(i, j) com-
putes the similarity between two images i and j, with 1 cor-
responding to identical images and 0 to completely different
images. For each feature type, there is one kernel. To com-
bine features, we simply average their corresponding kernels;
future work will investigate weighting and integrating these
kernels into a combined ensemble via supervised learning to
rank [12]. Hi and Hj below denote the histograms for im-
ages i and j, and k is the dimension of their feature vectors.
m is the mean χ2 distance across all dataset images.

χ2 (Hi, Hj) =
1

2

kX
c=1

„
(Hi(c)−Hj(c))

2

Hi(c) + Hj(c)

«
(1)

K(i, j) = exp

„
− 1

m
χ2(Hi, Hj)

«
(2)

The χ2 kernel helps us compute the distance between two
images. Now we map this distance to a similarity rank be-
tween 1 and 5, with 1 corresponding to very similar paintings
and 5 to very dissimilar paintings. Assume v is a vector of
the distance between image I and all other images in the
dataset. A high kernel value corresponds to a small dis-
tance, but we want a low similarity rank to correspond to
similar images, so we map high values to low values by set-
ting v = 1−v. Now we divide v by the highest value in v, to
ensure that all values in v are between 0 and 1 (which they
should already be). Next, we multiply v by 5 and round to
the next highest integer, to ensure that v ranges between 0
and 5. Now we map all values below 1 to 1 to obtain values
between 1 and 5 for all images. This is namely the vector of
similarity rank scores we will use for evaluation.



5. COLLECTING HUMAN JUDGMENTS
To evaluate both task difficulty and system effectiveness,

we asked people with varying knowledge of art to judge the
stylistic similarity between different pairs of paintings. We
defined this similarity judging task as an MTurk HIT and
crowdsourced it to distributed workers.

To determine how humans perceive the similarity between
paintings, we generated sets of image pairs for a subset of
all possible pairs in our dataset. For each pair, we asked the
worker to rate the stylistic similarity of each pair on a 5-point
scale: “very similar,” “somewhat similar,” “neither similar
nor dissimilar,” “somewhat dissimilar,” or “very dissimilar”.
Our instructions explained what we meant by “style,” as
well as illustrated a dissimilar pair and a similar pair (see
Table 3). An example HIT is shown in Figure 5.

Figure 5: Interface of the judgment request for one
image pair. The guidelines, feedback box, and self-
reported expertise box are not shown.

While MTurk reduces many technological barriers to crowd-
sourcing, a variety of practical challenges remain which can
limit the practical effectiveness of the crowdsourcing paradigm
[4, 14, 19]. For example, we followed a principle of itera-
tive refinement: we incrementally designed our MTurk HIT
based on feedback from friends, co-workers, and small pi-
lot runs. This let us identify and fix problems as early as
possible to reduce cost and maintain a positive reputation
with workers. For example, one early tester reported not
knowing what was meant by “style” thus leading us to add
example similar and dissimilar pairs to elucidate the desired
distinction.

Amazon currently charges 10% overhead on HIT cost,
with a minimum charge of $0.005 per HIT, providing some
incentive to perform multiple judgments per HIT. Further
incentive comes from wanting to ensure each worker per-
forms some minimum number of HITs such that their ac-
curacy can be assessed with some minimal confidence. We
included 5 image pairs to judge per HIT.

An open question in general with crowdsourcing is how to
determine appropriate pay. Issues include: difficulty of work
(how long it will take), nature of the work (how fun it will
be), desire to attract workers while avoiding spam workers,
etc. We did not investigate this issue here; we tried the min-
imum rate of $0.01 per HIT and had no problem attracting

workers. It is certainly possible that higher quality workers
might have been attracted by greater pay.

While we did not use either a qualification test or trap
questions for quality control, we did try requiring workers to
provide feedback justifying their judgments. The argument
for such feedback is that besides identifying problems with
HIT design and providing useful feedback on the specific
HIT performed, it can be a simple way to gauge user effort
and seriousness via the degree and nature of the feedback
provided. The concern of requiring such feedback rather
than having it be optional is that it may discourage some
workers who are competent to perform the task but not com-
fortable or willing to provide written feedback in English.
Our subsequent analysis divides judgments into HIT design
groups D1 (feedback required for at least one judgment) and
D2 (no option for feedback in the HIT).

To improve quality, we collected three judgments per im-
age pair and resolved disagreements via simple majority
vote. More sophisticated strategies for label selection [16]
and label aggregation [18, 21] have been left for future work.

As part of the HIT design, we asked workers to self-assess
their own knowledge of art as a basis for interpreting their
judgments. To encourage honesty, no suggestion was made
of greater pay to more knowledgeable workers. Knowledge
of art was rated on a 3-point scale: “a lot,” “a little bit,” or
“none”. Our analysis thus partitions the three judgments
into three expertise categories, meaning some image pairs
will have less than three judgments for a given category.
When this leaves two disagreeing judgments, or when three
judgments all pick different categories, we randomly pick
one of the judgments. While we wanted our evaluation to
include such “close-calls” (system scores should reflect these
boundary cases), the inclusion of this random tie-breaking
data effectively added an unhelpful white-noise signal to our
system evaluation, and in hindsight it would have been bet-
ter to omit it entirely. We could have also reduced cases of
two-way ties by iteratively resubmitting each image pair un-
til we had collected at least three judgments for it for each
expertise category.

The number of workers who completed HITs and the num-
ber of judgments are presented in Tables 4 and 5. The num-
ber of workers overall is less than the sum of the workers for
designs D1 and D2 since some workers completed tasks for
both designs. At a cost of $0.015 per HIT, the 630 HITs cost
a total of $9.45. An additional $2.64 was spent in iterating
the HIT design, for a total cost of $12.09.

HIT Design Unique Workers HITs Judgments
D1 74 450 2237
D2 47 180 891
Total 90 630 3128

Table 4: Worker statistics.

6. EVALUATION
We begin our evaluation by measuring task difficulty as

a function of inter-annotator agreement. In particular, we
report what fraction of judgments for a given image pair
are equal to the majority vote for that image pair (±1, i.e.
allowing scores to be 1 off and still match). While report-
ing of Fleiss’ kappa would have been more standard, this
simple statistic was sufficient to show the agreement of ap-



Guidelines:

The goal of this task is to determine how similar the artistic style of two paintings is.

Please only examine the style of the paintings, NOT their content.

Style is a broad concept, but some examples of aspects of style involve the intensity
of color changes, the appearance of brush strokes, subtlety versus visual “loudness”,
color palettes, realism of the images versus abstractness, etc. You also have some
freedom in choosing what “style” means to you.

For example, the following two images (one of which is an impressionist painting and
the other expressionist) differ in the intensity of color changes.

[displayed pair of stylistically dissimilar images]

The types of brush strokes in the images below are also different.

[displayed pair of stylistically dissimilar images]

On the other hand, the following two images are similar in style (and are in fact both
expressionist paintings).

[displayed pair of stylistically similar images]

Please provide a very brief (a few words) explanation of your choice for one of the
image pairs in the field at the bottom. Also please indicate how knowledgeable you
are about art.

If you cannot see the images, please return the HIT. Thank you!

Table 3: HIT instructions to workers in design D1 (explained below).



Knowledge D1 D1 labels D2 D2 labels
Most 522 448 175 160

Middle 1650 735 641 290
Least 65 65 75 70
Total 2237 1248 891 520

Table 5: Statistics of collected judgments and la-
beled image pairs as a function of HIT design vs.
worker knowledge level. A “ground-truth” label for
each image pair is inferred from judgments via ma-
jority vote (with random selection in case of ties).

proximately 50% to 76.5% between judges. Table 6 provides
specific results of inter-annotator agreement for each of the
three knowledge level worker categories.

Knowledge D1 D2
Most 0.7655 0.6667

Middle 0.7637 0.7582
Least N/A 0.5000

Table 6: Inter-annotator agreement statistics.

We next evaluate agreement of our features in compari-
son with human judgments of style similarity. We expect
generic feature types (such as Phog) to perform less well
than feature types more suitable for discriminating between
art styles (such as the filter bank features) or specifically
designed to capture style markers (such as “Color cells”).
Our evaluation procedure and results are described below.

We evaluate the performance of our algorithm by compar-
ing the human or user similarity score (U) to the system or
machine score (S). As noted above, if the two scores are ≤
1 ranks apart (e.g. U = 1, S = 2), we consider the scores
to be in agreement. There are 5x5 = 25 possible combina-
tions of U and S scores, and 13/25 scores signify agreement
within ±1. Assuming similarity judgments are uniformly
distributed across the five possible categories, chance perfor-
mance is 52%. However, the ±1 tolerance means predicting
only categories 2-4 raises chance performance to 60%.

The performance score for each feature type is computed
as the fraction of image pairs for which the users and the fea-
ture agree (within ±1 categories). We use the competence
scores which the workers provided to compute separate per-
formance scores for each feature type in each competence
category (Figures 6, 7 and 8). Perhaps most promising,
“F1” (LM filters) achieved nearly 80% agreement with the
most knowledgeable workers (Figure 6).

6.1 Worker Feedback Examples
In HIT design D1 which required written justification of

judgments made, the following examples provide a flavor for
the quality of feedback provided:

Workers with significant knowledge of art:

• “good”, “very nice”, “not bad”

• “. . . they are very dissimilar because the brush strokes
and use of line and color are quite different.”

• “the image pair is of a painting by Goya ( ?) and an
image by Sir Laurence Alma-Tadema. The former is
probably early c.19th and is a romantic portrait,with
somewhat free brushstrokes. The latter, a late c.19th
historical painting, with erotic overtones. The brush-
work is very smooth and facile.”

• “The pair of images consists of a very freely handled,
art deco-influenced , 20th century image of deer frol-
icking against a semi abstract background. The sec-
ond image is a late c19th portrait of a lady, rather
formal, Japanese-iinfluenced, much tighter and stud-
ied brushstrokes. The former painter is not interested
in texture, whereas the second is.”

Workers with medium knowledge of art:

• “first picture”, “last pair”, “HARD”

• “I said they were very disssimilar although they both
have human figures, the one on the left is very realistic,
and the one on the right is extremely skewed.”

• “one is just a modern art, other is nature’s beauty”

• “the pairs is expressing tne happyness in similarity”

• “the first painting is very harsh with definate strong
lines and context. Whereas the second picture is soft
and rounded both in style and colour.”

• “Both Paintings are by van Gogh”

Workers with little knowledge of art:

• “good”, “HAPPY”

• “number 1 - realism in the image”

• “The image 5 is somewhat dissimilar because one in of
a lady and one of a scenery.”

• “. . . the first pic is more flowing and blended; the sec-
ond has harder lines and more patterns.”

• “palette three proves very disimilar due to the visual
loudness, the monet is very subtle in comparison to the
other painting in reguards to brushstroke and colour”

6.2 Discussion
In comparison to the knowledgable workers, the filter bank

features performed very well, with the LM filter bank fea-
tures most closely matching human judgments. In contrast,
the generic Gist and Phog features did not work well, as ex-
pected. This suggests that our special features agreed quite
well with knowledgeable judges. Overall, the histogram ver-
sions of most features work as well as the non-histogram ver-
sions, except for the LM filters features and the color cells
features, which is intriguing and indicates that the spatial
placement of features cannot be ignored.

With the somewhat knowledgable users, all features per-
formed roughly comparably, with the feature types designed
specifically for discriminating between art styles (the filter
bank and color cells features) performing slightly better than
the generic features. Interestingly, we observe that very and
somewhat knowledgeable workers both had similar agree-
ment for design D1 yet compare differently with the machine
output. This merits further investigation. With workers



who have very little knowledge about art, generic features
like Gist and Phog work very well. This suggests that non-
experts might themselves miss important markers of style.

The agreement scores obtained from the D1 and D2 HIT
interfaces are comparable, with a slight tendency of D1 judg-
ments to agree with our features more. This indicates that
when users are asked to provide justification for their choices,
they are more likely to agree with our idea of what style is.
Finally, we note that most workers considered themselves to
be at least somewhat knowledgeable about art, while very
few admitted they knew very little about it.

7. CONCLUSION AND FUTURE WORK
We described methodology and evaluation for a new find-

similar search task in which a user seeks stylistically similar
paintings. We approached this as a content-based image re-
trieval task, modeling stylistic similarity via various machine
vision features designed specifically to capture differences
between art styles. Results of system prediction using these
features are promising and suggest significant potential for
approximating expert judgments via automation.

Nevertheless, quality control of crowdsourced judgments
remains an important issue going forward. While we fil-
tered workers by approval rating, solicited feedback, and
collected multiple judgments, a subjective task such as ours
still requires stricter safeguards for quality. Workers nat-
urally want to optimize their hourly pay, and some spam
workers will try the fastest approach of all: random clicking
(manually or via a bot). Strategies like qualification tests
and trap questions can provide valuable quality assurance
against such spam and are critical for ensuring that subse-
quent analyses are based on a solid foundation of quality
data. Human-computer interaction (HCI) is also important
for effective design and interaction with people in order to
engage them, clearly convey instructions, and support effec-
tive collaboration between man and machine.

Another clear direction for future work is using the col-
lection human judgments we have collected to train a super-
vised learning to rank model [12] which integrates weighted
features into a unified model for predicting stylistic similar-
ity. As mentioned earlier, use of more sophisticated strate-
gies for label selection [16] a la active learning and label
aggregation [18, 21] is also expected to help by collecting
more labels where they are most needed and modeling the
varying accuracy of different human judges.

In terms of computer vision features, interesting possibili-
ties abound. We can obtain a segmentation over each image
(resulting in distinct regions such as, for instance, beach,
boat, flowers, building, sky) and compute our histograms
over those regions rather than over fixed-size grid cells. We
might also incorporate higher-level style markers.
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Figure 6: Feature agreement with most knowledgeable workers. Left and right bars correspond to D1 and
D2 conditions, respectively.

Figure 7: Feature agreement with somewhat knowledgeable workers. Left and right bars correspond to D1
and D2 conditions, respectively.

Figure 8: Feature agreement with least knowledgeable workers. Left and right bars correspond to D1 and
D2 conditions, respectively.


