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Abstract. Modeling changes in individual relevance assessor performance over
time offers new ways to improve the quality of relevance judgments, such as by
dynamically routing judging tasks to assessors more likely to produce reliable
judgments. Whereas prior assessor models have typically adopted a single gen-
erative approach, we formulate a discriminative, flexible feature-based model.
This allows us to combine multiple generative models and integrate additional
behavioral evidence, enabling better adaptation to temporal variance in assessor
accuracy. Experiments using crowd assessor data from the NIST TREC 2011
Crowdsourcing Track show our model improves prediction accuracy by 26-36%
across assessors, enabling 29-47% improved quality of relevance judgments to be
collected at 17-45% lower cost.
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1 Introduction

Recent efforts in efficiently collecting relevance judgments at scale have focused on
how to collect high-quality relevance judgments with crowdsourcing [1] [2] [3]. Since
quality of relevance judgments critically influences the results of IR system evalua-
tion [4], a great deal of research has focused quality improvement of relevance judg-
ments via various approaches: multiple labeling and aggregation [5], behavioral effects
investigation [6], letting assessors select which tasks to work on [7], and efficient HIT
(Human Intelligence Tasks) design [8].

Predicting the quality of judgments represents another opportunity to improve qual-
ity of crowdsourced relevance judgments. For instance, task routing in crowdsourc-
ing [7] requires a method to match a worker to a task. One can route a specific judgment
task to a specific assessor based on the prediction of a probability of an assessor’s next
judgment correctness, and expect improved quality of relevance judgments.

Prior work in predicting assessors’ annotation performance has typically assumed
that an assessor’s judgments are independent and identically distributed (i.i.d) over
time [9]. In other words, prior work has not considered temporal effects among judg-
ments. To solve this problem, Donmez et al. [10] and Jung et al [11] proposed time-
series models. However, while one could imagine many features characterizing an as-
sessor’s behavior, their models still rely upon a single generative model at time t.



To address this problem, we build a Generalizable feature-based Assessor Model
(GAM) that allows us to flexibly capture a wider range of assessor behaviors by incor-
porating features which model different aspects of this behavior. We integrate various
features from prior studies which were used mainly or only for the estimation of crowd
assessor’s annotation performance [11] or judgment simulation [4]. In addition, we de-
vise several new behavioral features indicating an assessor’s annotation performance
over time and integrate them with the existing features selected from prior studies.

We investigate this predictive model with the public NIST TREC 2011 Crowdsourc-
ing Track dataset1. Firstly, we evaluate prediction quality, both in terms of hard predic-
tion (binary correct or not) and soft prediction (probability of making a correct label).
In particular, we study the effect of a decision reject option, which improves prediction
accuracy by sacrificing prediction coverage, providing a tuning parameter for aggres-
sive vs. conservative prediction given model confidence. In the second experiment, we
conduct an in-depth feature analysis in order to compare the relative importance of each
feature. Finally, we evaluate the effectiveness of our predictive model for crowdsourced
judgment quality improvement under a realistic scenario assuming task routing and
label aggregation. Our empirical evaluation demonstrates that our model improves pre-
diction accuracy by 26-36% across 54 assessors. In addition, our experiments show that
the quality of relevance judgments by our prediction model-based task routing improves
its accuracy by 29-47% with lower cost (17-45%). Our research questions are:

RQ1: Feature Design for Prediction Model When we build a discriminative, feature-
based learning framework for predicting work quality, what features are useful to
include, and what is their relative importance?

RQ2: Prediction Performance Improvement Does our prediction model improve pre-
diction performance? How does decision rejection trade-off coverage vs. accuracy
of prediction model in comparison to other baselines?

RQ3: Impact on Judgment Quality and Cost. Can our prediction model improve the
quality of relevance judgments and/or decrease cost of collecting judgments?

2 Problem
Estimating and predicting crowd assessors’ performance has gained relatively little at-
tention in IR system evaluation. Most prior work in crowd assessor modeling has fo-
cused on simple estimation of assessors’ performance via metrics such as accuracy and
F1 [12] [13]. Unlike other studies, Caterette and Soboroff presented several assessor
models based on Bayesian-style accuracy with various types of Beta priors [4]. Re-
cently, Ipeirotis and Gabrilovich presented a similar type of Bayesian style accuracy
with a different Beta prior in order to measure assessors’ performance [8]. However,
neither investigated prediction of an assessor’s judgment quality.

Figure 1 shows two real examples of failures of existing assessor models in pre-
dicting assessor’s judgment correctness. The more accurate left assessor (a) begins with
very strong accuracy (0.8) which continually degrades over time, whereas accuracy of
the right assessor (b) hovers steadily around 0.5. Suppose that a crowd worker’s next

1 https://sites.google.com/site/treccrowd/
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Fig. 1. Two examples of failures of existing assessor models and success of our proposed model,
GAM in predicting the correctness of assessors’ next label ((a) high accuracy assessor and (b)
low accuracy assessor). While the agreement of a crowd assessor’s judgments with that of the
original NIST topic authority (GOLD) oscillates over time, the existing assessor models (Time-
series (TS) [11]), Sample Running Accuracy (SA), Bayesian uniform beta prior (BA-UNI [8])
do not follow the temporal variation of the assessors’ agreement with the gold labels. On the
contrary, GAM is sensitive to such dynamics of labels over time for higher quality prediction.

label quality (yt) is binary (correct/wrong) with respect to ground truth. While yt oscil-
lates over time, the existing models are not able to capture such temporal dynamics and
thus prediction based on these models is almost always wrong. In particular, when an
assessor’s labeling accuracy is greater than 0.5 (eg., average accuracy = 0.67 in Figure 1
(a)), the prediction based on the existing models are always 1 (correct) even though the
actual assessor’s next label quality oscillates over time. A similar problem happens in
Figure 1 (b) with another worker whose average accuracy is below 0.5.

In crowdsourcing and human computation, significant research has focused on the
estimation or prediction of crowd workers’ behavior or performance [14] [15]. How-
ever, most studies assumed that each annotation is independent and identically dis-
tributed (i.i.d) over time even though crowd worker behavior can have temporal dy-
namics as shown in Figure 1. Donmez et al. [10] was the first to propose a time-series
model. Jung et al. [11] presented a temporal model to estimate asymptotic worker accu-
racy. However, while there exist many features characterizing a crowd assessor’s behav-
ior, these models only rely on the observation of labels [10] or labels’ correctness [11].
For this reason, existing time-series models remain limited in terms of predicting an
assessor’s next judgment correctness as shown in Figure 1.



Problem Setting. Suppose that an assessor has completed n relevance judgments
and each judgment has NIST expert labels available to judge an assessor’s judgment
correctness. In this work, we assume that NIST expert labels represent objective ground
truth from which deviation is assumed to represent error, rather than valid, subjective
disagreement. However, in practice, some level of disagreement is expected and com-
mon, even with simplified topical relevance [16]. We leave relaxing this assumption for
future work.

The correctness of the ith judgment is denoted as yi ∈ {0, 1}, where 1 and 0 rep-
resent correct or not. Thus, the performance of an assessor can be represented as a
sequence of binary observations, y =

[
y1 y2 . . . yn

]
. For example, if an assessor com-

pleted five relevance judgments and erred on the first and third respectively, then his
binary performance sequence is encoded as y =

[
0 1 0 1 1

]
. GOLD in Figure 1 indi-

cates y of each assessor.
For this problem, we propose a generalizable feature-based assessor model (GAM)

that allows us to flexibly capture a wider range of assessors’ behaviors by incorporating
features which model different aspects of this behavior. Based on this model, we predict
whether or not an assessor’s next judgment will be correct, as defined by agreement
with the NIST expert who developed and judged the topic originally. By this ability to
flexibly model more aspects of assessor behavior, we expect greater predictive power
and an opportunity for more accurate predictions.

We generate a multi-dimensional feature vector, xi =
[
x1i x2i . . . xmi

]
per time i

and use xi as an input of a prediction function f . Prior assessor models only consider
a simple feature measure xi by a single metric, accuracy, and then use this feature as
an input of simple link function yi+1 = roundOff (xi). Instead, our proposed model
incorporates a multi-dimensional feature vector xi and uses this feature vector with a
learning framework f(xi, yi) = yi+1. The bottom plot of Figure 1 shows how GAM is
able to track the assessor’s varying correctness with greater fidelity.

3 Method: Generalized Time-Varying Assessor Model (GAM)

In this section, we present a generalizable feature-based assessor model that incorpo-
rates various observable and latent features modeling different aspects of assessors’
behavior. We first examine feature generation and integration, and then discuss learning
a predictive model with the generated features.

3.1 Feature Generation and Integration
An assessor’s behavior and annotation performance may be captured by various types
of features. In this study, we generate and integrate two types of features shown in Ta-
ble 1: observable and latent features. Bayesian-style features have various forms in prior
work according to different Beta prior settings. Among them, we adopt optimistic
(a Beta prior α = 16, β = 1) and pessimistic (a Beta prior α = 1, β = 16)
assessor models from Carterette and Soboroff’s study [4]. In addition, we adopt a
Bayesian style accuracy from Ipeirotis and Gabrilovich’s study which assumes a Beta
prior (α = 0.5, β = 0.5), referred to here as the uniform assessor model. In these
assessor models, each Beta prior characterizes each assessor’s annotation performance.



Feature Name Description
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e

Bayesian Optimistic Accuracy (BAopt) [4]
a Bayesian style accuracy with a prior Beta (16,1)

BAopt = (xt + 16)/(nt + 17)

Bayesian Pessimistic Accuracy (BApes) [4]
a Bayesian style accuracy with a prior Beta (1,16)

BApes = (xt + 1)/(nt + 17)

Bayesian Uniform Accuracy (BAuni) [8]
a Bayesian style accuracy with a prior Beta (0.5,0.5)

BAuni = (xt + 0.5/(nt + 1)
Sample Running Accuracy (SA) SAt = xt/nt

CurrentLabelQuality
a binary value indicating whether a current label is

correct or wrong.
TaskTime time to spend in completing this judgment task. (ms)

AccuracyChangeDirection (ACD)
a binary value indicating the absolute difference

between SAt−1 − SAt.

TopicChange
a binary value indicating a topic change between

time t− 1 and time t.
NumLabels a cumulative number of completed relevance judgments at time t.

TopicEverSeen
a real value [0∼1] indicating the familiarity of a topic.

1
a number of judgments on topic k at time t

L
at

en
t

Asymptotic Accuracy (AA) [11]
a time-series accuracy estimated by latent time-series model

proposed by Jung et al. c
1−φ .

φ [11]
a temporal correlation indicating how frequently a sequence

of correct/wrong observations has changed over time.

c [11]
a variable indicating the direction of judgments

between correct and wrong.

Table 1. Features of generalized assessor model (GAM). n is the number of total judgments and
x is the number of relevance judgments at time t.

For instance, the optimistic assessor model indicates that an assessor is likely to make
a relevance judgment in a permissive fashion, while the pessimistic model tends to
make more non-relevant judgments than relevant judgments. The uniform model has
an equal chance of making a relevant or non-relevant judgment. Note that Bayesian
style accuracies (BAopt, BApes, BAuni) were only used as a way of simulating judg-
ments or estimating an assessor’s performance in the original studies. In this study,
we instead used these accuracies as a feature of estimating an assessor’s annotation
performance as well as predicting an assessor’s next judgment’s correctness. Other ob-
servable features include measurable features from a sequence of relevance judgments
from an assessor. Among them, TaskT ime and NumLabels are designed to capture
an assessor’s behavioral transition over time. TopicChange checks the sensitivity of
an assessor to topic variation over time. The TopicEverSeen feature is designed to
consider the effect of growing topic familiarity over time. The value is discounted by
increased exposure to topic k.

Latent features are adopted from Jung et al’s [11] model of temporal dynamics of
assessor behavior (φ and c). While they only used asymptotic accuracy (AA) as an in-
dicator of an assessor’s annotation performance, we integrate all three features (AA, φ,
and c) into our generalized assessor model. Our intuition is that each feature may cap-
ture a different aspect of an assessor’s annotation performance and thus the integration
of various features enabling greater predictive power for more accurate predictions.

3.2 Predicting Judgments Quality

To select a learning model, we adopt L1-regularized logistic regression due to sev-
eral reasons. Firstly, it supports probabilistic classification as well as binary prediction



by logistic function. In our problem setting, we conflate graded relevance judgments
into binary values (0 or 1), and thus logistic regression is the best fit in order to handle
such a binary classification problem. In addition, a logistic regression model allows us
obtain the odds ratio, defined as the ratio of the probability of correct over incorrect rel-
evance judgments. Secondly, L1-regularized logistic regression prevents over-fitting in
learning models due to either co-linearity of the covariates or high-dimensionality. The
regularized regression shrinks the estimates of the regression coefficients towards zero
relative to the maximum likelihood estimate. Finally, logistic regression is relatively
simple and fast. In practice, one of the challenging issues to run learning algorithms is
that it takes too much time to update parameters and predict output values once a new
label comes. However, this model is quite efficient.

In prediction, we consider a supervised learning task where we are given N training
instances {(xi, yi), i = 1, ..., N}. Here, each xi ∈ RM is an M-dimensional feature
vector, and yi ∈ 0, 1 is a class label indicating whether an assessor’s next judgment
is correct (1) or wrong (0). Before fitting a model to our feature and target labels, we
first normalize our features in order to ensure that normalized feature values implicitly
weight all features equally in a model learning process. Logistic regression models the
probability distribution of the class label y given a feature vector X as follows:

p(y = 1|x; θ) = σ(θTx) =
1

1 + exp(−θTx)
(1)

Here θ = {β0, βT1 , ..., βTM} are the parameters of the logistic regression model; σ(·) is
the sigmoid function, defined by the second equality. The following function attempts
to maximize the log-likelihood in order to fit a model to a given training data.

max
θ
{
N∑
i=1

[yi(β0 + βTxi)− log(1 + eβ0+β
T xi)]− λ

M∑
j=1

|βj |}. (2)

3.3 Prediction with Decision Reject Option

Our predictive model can generate two types of outputs: a binary value predicting the
correctness of an assessor’s judgment (0 or 1) and a continuous value (yi+1 ∈ [0, 1])
indicating the probability of making a correct judgment. While a binary predictive value
(hard prediction) can be used as it is, a probabilistic predicted value (soft prediction)
can be used after a transformation, such as rounding-off. For instance, if an original
predicted value is 0.76, we could round this to a binary predictive value of 1.

In term of soft prediction, there exists room for improving its quality by taking ac-
count of prediction confidence. For instance, if a value of soft prediction is close to
0.5, it fundamentally indicates very low confidence. Therefore, we may avoid the risk
of getting noisy predictions by adopting a decision rejection option [17]. In this study,
we round off a probabilistic predictive value with a decision reject option as follows. If
yi+1 < 0.5− δ or yi+1 ≥ 0.5 + δ then yi+1 does not need any transformation and use
its original value. If yi+1 ≥ 0.5 − δ or yi+1 < 0.5 + δ then yi+1 is null, indicating
the reject of decision. δ is a parameter to control the limits of decision reject option
∈ [0, 0.5]. High δ indicates a conservative prediction which increases the range of de-
cision rejection while sacrificing coverage. On the other hand, low δ allows prediction



in a permissive manner, decreasing the threshold of decision rejection and increasing
coverage.

4 Evaluation

Experimental Settings
Dataset. Data from the NIST TREC 2011 Crowdsourcing Track Task 2 is used. The

dataset contains 89,624 graded relevance judgments (2: strongly relevant, 1: relevant,
0: non-relevant) collected from 762 workers rating the relevance of different Webpages
to different search queries [18]. We conflate judgments into a binary scale (relevant
/ non-relevant), leaving prediction of graded judgment accuracy for future work. We
processed this dataset to extract the original temporal order of the assessor’s relevance
judgments. We include 3,275 query-document pairs which have expert judgments la-
beled by NIST assessors, and we exclude workers making < 20 judgments to ensure
stable estimation. Moreover, since the goal of our work is to predict assessors’ next
judgment quality, we intentionally focus on prolific workers who will continue to do
this work in the future, for whom such predictions will be useful. 54 sequential rele-
vance judgment sets are obtained, one per crowd worker. The average number of labels
(i.e., sequence length) per worker is 154.

Metrics. Prior to measurement, we collect gold labels for each assessor by com-
puting the agreement of a crowd assessor’s judgments with that of the original NIST
topic authority. We evaluate the performance of our prediction model with two met-
rics. Firstly, we measure the prediction performance with accuracy and Mean Abso-
lute Error (MAE). Predicted probabilistic values (soft prediction) produced by our
model are measured with MAE, indicating the absolute difference between a predicted
value vs. original binary value indicating the correctness of an assessor’s judgment:
MAE = 1

n

∑n
i=1 |predi − goldi|, where n is the number of judgments. Rounded

binary labels (hard labels) are evaluated by accuracy. Secondly, accuracy is used for
measuring the prediction performance of the binary probabilistic values from our pre-
diction method. Since our extracted dataset is well-balanced in terms of a ratio between
relevant vs. non-relevant judgments, use of accuracy is appropriate.

Models. We evaluate our proposed Generalized Assessor Model (GAM) under var-
ious conditions of decision reject options with two metrics. Our initial model uses no
decision reject option, setting δ = 0. In order to examine the effect of decision re-
ject options, we vary δ ∈ [0, 0.25] by 0.05 step-size. Since we have 54 workers, we
build 54 different predictive models and evaluate their prediction performance and final
judgment quality improvement.

Our model works in a sequential manner that updates the model parameter θ once a
new binary observation value (correct/wrong) comes. We use each worker’s first 20 bi-
nary observation values as an initial training set. For instance, suppose a worker has
50 sequential labels. We first collect a sequence of binary observation values (cor-
rect/wrong) by comparing a worker’s label with a corresponding ground truth judged by
NIST experts. Next, our prediction model takes the first 20 binary observation values
and then predicts the 21st label’s quality (correct/wrong) of this worker. Once actual
21st label comes from this worker, we measure the accuracy and MAE by comparing
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Fig. 2. Summary of relative feature importance across 54 regression models.

the label with a corresponding ground truth from NIST experts. For the following 29
judgments we repeat the same process in a sequential manner, predicting the quality of
each label one-by-one.

To learn our logistic regression model, we choose the regularization parameter λ
as 0.01 after the investigation of prediction performance with varying parameter values
{0.1, 0.01, 0.001} over the initial training set of each worker. For feature normalization,
we apply standard min-max normalization to the 13 features defined in Section 3.1.
Note that λ is the only model parameter we tune, and all settings of decision-reject
parameter are reported in results.

As a baseline, we consider several assessor models proposed by prior studies [4]
[8] [11] (Section 3.1). We adopt two assessor models from Carterette and Soboroff’s
study, optimistic assessor (BAopt) and pessimistic assessor (BApes), and one asses-
sor model of Bayesian accuracy (BAuni) used in Ipeirotis and Gabrilovich’s study (see
Table 1). In addition, we test the performance of a time-series model (TS) proposed
by Jung et al [11] and sample running accuracy (SA) as defined by Table 1. All of the
baseline methods predict the binary correctness of the next judgment yi+1 by round-
ing off the worker’s estimated accuracy at time i. Decision reject options are equally
applied to all of the baseline methods.

4.1 Experiment 1 (RQ1): Feature Selection & Importance

Our first experiment is to figure out which features are relatively more important than
others. Intuitively, having more features leads to more predictive power. However, in
practice, excessive features may lead to over-fitting. Thus, we investigate relative fea-
ture importance by evaluating feature subsets.

We adopt the bestglm r package2 and run the BICg model in order to find the best
subset regression models. Since we have 54 assessors, we run this method for all of the
54 original regression models. Next, we observe the selected features of each subset
model, and count the cumulative selection of each feature across 54 regression models.
Figure 2 shows the relative feature importance across 54 regression models for all of the
assessors. Asymptotic accuracy (AA) is selected in 49 of 54 models, followed byBAopt

2 http://cran.r-project.org/web/packages/bestglm/vignettes/bestglm.pdf



Metric GAM TS BAuni BAopt BApes SA

Accuracy 0.802* 0.621 0.599 0.601 0.522 0.599
% Improvement NA 29.1 33.9 33.4 53.6 33.9

# of Wins NA 50 52 50 54 52
# of Ties NA 3 1 3 0 1

# of Losses NA 1 1 1 0 1
MAE 0.340* 0.444 0.459 0.448 0.488 0.458

% Improvement NA 23.4 25.9 24.1 33.0 25.8
# of Wins NA 53 53 53 54 53

# of Losses NA 1 1 1 0 1

Table 2. Prediction performance (Accuracy and Mean Average Error) of different predictive mod-
els. % Improvement indicates an improvement in prediction performance between GAM vs. each
baseline ( (GAM−baseline)

baseline
). # of Wins indicates the number of assessors that GAM outperforms

a baseline method while # of Losses indicates the opposite of # of Wins. # of Ties indicates the
number of assessors that both a method and GAM show the same prediction performance for
an assessor. (*) indicates that GAM prediction outperforms the other six methods with a high
statistical significance (p<0.01).

and BApes at 43 and 39, respectively. Numlabels is selected in the half of the cases
(27), which implicitly indicates that the increase in the quantity of the given tasks affects
an assessor’s next judgment correctness. On the contrary, the quality of next judgments
of the 54 assessors in our dataset does not appear to be sensitive to topic change and
topic familiarity. In addition, sample accuracy (SA) appears relatively less important
than the other accuracy-based metrics such as AA, BAopt and BApes. Interestingly,
GAM model with only the top five features still shows little degraded performance (7-
10% less) vs. the original regression models and outperforms all baselines.

4.2 Experiment 2 (RQ2): Prediction Performance Improvement
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Fig. 3. Prediction accuracy of workers’ next label by different methods (δ = 0). While other meth-
ods show low accuracy against assessors with labeling accuracy near 0.5, the proposed model
(GAM) shows significant improvement in predicting the correctness of workers’ next judgments.
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as well as prediction performance.

To answer our second research question, we first compare the overall prediction
performance (Accuracy, MAE) of GAM with the baseline models across 54 crowd as-
sessors. Table 2 shows that GAM prediction performance outperforms all of the base-
line methods across 50-54 assessors in accuracy and 53-54 assessors in MAE. GAM
improves the prediction accuracy (hard label) and MAE (soft label) by 26-36% on av-
erage. GAM prediction errs for only one assessor vs. the baselines. However, even for
this assessor, GAM only made one or two more prediction errors in comparison to the
other baselines.

Figure 3 shows the relationship between assessors’ labeling accuracy (sample run-
ning accuracy) vs. prediction accuracy of GAM and the baseline models. While the
baseline models show low accuracy against assessors whose labeling accuracy is near
0.5, GAM significantly improves prediction error for those assessors in particular.

Lastly, we examine the effects of decision reject options on GAM prediction. Fig-
ure 4 demonstrates that the baseline models show sharp decline of coverage in predic-
tion in order to significantly improve their prediction accuracies. However, the coverage
of GAM prediction only gently decreases; even with the second strongest reject option
(δ = 0.2), it still covers almost the half of prediction. In sum, GAM prediction not only
outperforms the baseline models in terms of prediction accuracy, but it also shows less
sensitivity to the increase of the decision reject option.

4.3 Experiment 3 (RQ3): Impact on judgment quality and cost

Our last experiment is to examine quality effects on relevance judgments via the pro-
posed prediction model. We conduct an experiment based on task routing. For instance,
if the prediction of an assessor’s next judgment indicates that the assessor is expected to
be correct, we route the given topic-document pair to this assessor and measure actual
judgment quality against ground truth labeled by NIST. From our dataset, we only use
826 topic-document pairs that have more than three judgments per topic-document pair.
Since the average number of judges per query is about 3.7, we test the cost saving ef-
fect with varying three task routing scenarios (Number of Judges = {1, 2, 3}). Judgment



Prediction Models for Task routing No Routing
Number of Judges GAM TS BAuni BAopt BApes SA Random All labels

1 0.786* 0.604 0.578 0.582 0.558 0.569 0.556

0.595

% Improvement NA 30.1 36.0 35.1 40.9 38.1 41.4
2 0.816** 0.617 0.592 0.595 0.574 0.582 0.572

% Improvement NA 32.3 37.8 37.1 42.2 40.2 42.7
3 0.880* 0.647 0.608 0.623 0.598 0.608 0.581

% Improvement NA 36.0 44.7 41.3 47.2 44.7 51.5

Table 3. Accuracy of relevance judgments via predictive models. Number of Judges indicates
the number of judges per query-document pair. When the Number of Judges > 1, majority
voting is used for label aggregation. Accuracy is measured against NIST expert gold labels.
% Improvement indicates an improvement in label accuracy between GAM vs. each baseline
( (GAM−baseline)

baseline
). The average number of judges per query-document pair is 3.7. (*) indi-

cates that GAM prediction outperforms the other six methods with high statistical significance
(p<0.01).

quality is measured with accuracy, and a paired t-test is conducted to check whether
quality improvement is statistically significant.

Table 3 shows the results of judgment quality via predictive model-based task rout-
ing. GAM substantially outperforms the other baselines across three task routing cases.
The improvement of final judgment quality grows with the increase of the number of
judges per query-document pair (Number of Judges) from 29-32% to 36-47%. Notice
that GAM with only two routed judges achieves 29% quality improvement. Moreover,
GAM provides high-quality relevance judgments (accuracy > 0.8) with only 54% =
( 2
3.7 ) of the original assessment cost. In contrast, we see that task routing with baselines

alone (BAuni,BApes,SA) may not be any better than random assignment.

5 Conclusion and Future Work

Despite recent efforts of quality improvement in crowdsourced relevance judgment,
prior work in crowd assessor modeling cannot adequately predict an assessor’s next
judgment quality since it simply measures assessor performance via a single generative
model without considering temporal effects among relevance judgments. We present
a general discriminative learning framework for integrating arbitrary and diverse evi-
dence for temporal modeling and prediction of crowd work accuracy. Our experiments
demonstrate that the proposed model improves prediction performance by 26-36% as
well as crowdsourced relevance judgment quality by 29-47% at 17-45% lower cost.

As a next step, we plan to relax our restrictive assumption of the existence of NIST
expert labels to judge the correctness of an assessor’s judgments. In addition, we want to
examine how to evaluate the correctness of judgments in recognition that even topical
judgments are still subjective. Beyond that, we plan to further investigate how to use
this model for different applications of quality assurance in crowdsourcing, such as
weighted label aggregation and spam worker filtering.
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